[1] 王旭睿.氮氧化物危害及处理方法[J].当代化工研究,2018(10):116-117. WANG X R. Nitrogen oxide hazards and treatment methods[J]. Modern Chemical Research, 2018(10): 116-117 (in Chinese). [2] DVOŘÁK R, CHLÁPEK P, JECHA D, et al. New approach to common removal of dioxins and NOx as a contribution to environmental protection[J]. Journal of Cleaner Production, 2010, 18(9): 881-888. [3] 于文清.SCR法烟气脱硝系统的控制策略在火电厂中的应用[D].北京:华北电力大学,2012. YU W Q. Control strategy of SCR flue gas denitration system used in a thermal power plant[D]. Beijing: North China Electric Power University, 2012 (in Chinese). [4] 王小曼,张晟昊,权芳芳.氮氧化物的危害及其催化还原控制方法[J].上海节能,2019(4):259-261. WANG X M, ZHANG S H, QUAN F F. Harmness of NOx and its catalytic reduction control method[J]. Shanghai Energy Conservation, 2019(4): 259-261 (in Chinese). [5] 张子丽.NO2对慢性阻塞性肺疾病发病的影响及机制研究[D].广州:广州医科大学,2018. ZHANG Z L. Effects and mechanisms of MMP16 on chronic obstructive pulmonary diseases based on model induced by NO2[D]. Guangzhou: Guangzhou Medical University, 2018 (in Chinese). [6] 杨娟娟,强 敏,雷晶晶,等.纳米V2O5/AC催化剂脱除烟气中NO的研究[J].化学工程,2014,42(10):6-10+24. YANG J J, QIANG M, LEI J J, et al. Removal of NO in flue gas with nano V2O5/AC catalyst[J]. Chemical Engineering (China), 2014, 42(10): 6-10+24 (in Chinese). [7] HAKEEM K R, SABIR M, OZTURK M, et al. Nitrate and nitrogen oxides: sources, health effects and their remediation[J]. Reviews of Environmental Contamination and Toxicology, 2017, 242: 183-217. [8] 王禹苏,张 蕾,陈吉浩,等.大气中氮氧化物的危害及治理[J].科技创新与应用,2019(7):137-138. WANG Y S, ZHANG L, CHEN J H, et al. Harm and treatment of nitrogen oxides in the atmosphere [J]. Technology Innovation and Application, 2019(7): 137-138 (in Chinese). [9] 刘士豪,郭雪花,汪义超,等.蜂窝陶瓷填料型催化剂的制备及其脱硝性能评价[J].硅酸盐通报,2020,39(4):1308-1313. LIU S H, GUO X H, WANG Y C, et al. Preparation of honeycomb ceramics packing type catalyst and its DeNOx performance evaluation[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1308-1313 (in Chinese). [10] 林晓芬,张 军,尹艳山,等.烟气脱硫脱氮技术综述[J].能源环境保护,2014,28(1):1-4. LIN X F, ZHANG J, YIN Y S, et al. Discussion on techniques of gas desulfurization and denitration[J]. Energy Environmental Protection, 2014, 28(1): 1-4 (in Chinese). [11] 顾卫荣,周明吉,马 薇,等.选择性催化还原脱硝催化剂的研究进展[J].化工进展,2012,31(7):1493-1500. GU W R, ZHOU M J, MA W, et al. Research progress on selective catalytic reduction De-NOx catalysts[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1493-1500 (in Chinese). [12] 何飞强,邓先和,陈 民.乙二胺四乙酸铁络合物湿法络合脱硝液的再生研究进展[J].化工进展,2018,37(2):737-743. HE F Q, DENG X H, CHEN M. Research progress on Fe(Ⅱ) EDTA regeneration accompanied wet denitrification[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 737-743 (in Chinese). [13] 杨加强,梅 毅,王 驰,等.湿法烟气脱硝技术现状及发展[J].化工进展,2017,36(2):695-704. YANG J Q, MEI Y, WANG C, et al. Current status and trends on wet flue gas denitration technology[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 695-704 (in Chinese). [14] 马乐凡.液相络合-铁还原-酸吸收回收法脱除烟气中NOx的研究[D].湘潭:湘潭大学,2005. MA L F. Removal of NOx from flue gas with the recovery process of absorption with acid following complex in aqueous solution and reduction with iron[D]. Xiangtan: Xiangtan University, 2005 (in Chinese). [15] 何飞强.Fe(Ⅱ)EDTA络合湿法脱硝及其再生研究[D].广州:华南理工大学,2017. HE F Q. Wet flue gas denitrification with Fe(Ⅱ)EDTA accompanying with regeneration[D]. Guangzhou: South China University of Technology, 2017 (in Chinese). [16] XU C, CHANG G G, LIU H X, et al. Highly efficient heterogeneous catalytic reduction of Fe(II)EDTA-NO in industrial denitrification solution over Pd/AC catalyst[J]. Industrial & Engineering Chemistry Research,2019, 58(51): 22875-22883. [17] LIU S H, WANG Z K, GUO X H, et al. N-doped porous carbon-anchored Pd nanoparticles: a highly efficient catalyst for Fe(II)EDTA-NO reduction[J]. The Journal of Physical Chemistry C, 2021, 125(31): 17068-17077. [18] NIE R F, MIAO M, DU W C, et al. Selective hydrogenation of CC bond over N-doped reduced graphene oxides supported Pd catalyst[J]. Applied Catalysis B: Environmental, 2016, 180: 607-613. [19] JIN H Y, XIONG T Y, LI Y, et al. Improved electrocatalytic activity for ethanol oxidation by Pd@N-doped carbon from biomass[J]. Chemical Communications (Cambridge, England), 2014, 50(84): 12637-12640. [20] WANG P, STEINMANN S N, FU G, et al. Key role of anionic doping for H2 production from formic acid on Pd(111)[J]. ACS Catalysis, 2017, 7(3): 1955-1959. [21] LIU S H, GUO X H, WANG Z K, et al. Core-shell Ag-Pd nanoparticles catalysts for efficient NO reduction by formic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127115. [22] RANGRAZ Y, MAJID H. Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts[J]. RSC Advances, 2021, 11(38): 23725-23778. |