[1] MESTROVIC D, CIZMR D, STANILOVIC V. Reactive powder concrete: material for the 21st century[J]. WIT Transactions on Engineering Sciences, 2007, 57. [2] RICHARD P, CHEYREZY M H. Reactive powder concretes with high ductility and 200~800 MPa compressive strength[C]//“SP-144: Concrete Technology: Past, Present, and Future”. American Concrete Institute, 1994, 144: 507-518. [3] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. [4] SANCHAYAN S, FOSTER S J. High temperature behaviour of hybrid steel-PVA fibre reinforced reactive powder concrete[J]. Materials and Structures, 2016, 49(3): 769-782. [5] TAYEH B A, AADI A S, HILAL N N, et al. Properties of ultra-high-performance fiber-reinforced concrete (UHPFRC): a review paper[J]. AIP Conference Proceedings, 2019, 2157(1): 020040. [6] 张丽辉,郭丽萍,孙 伟,等.生态型高延性水泥基复合材料的高温损伤[J].硅酸盐学报,2014,42(8):1018-1024. ZHANG L H, GUO L P, SUN W, et al. Damage of ecological high ductility cementitious composites after exposed to high temperature[J]. Journal of the Chinese Ceramic Society, 2014, 42(8): 1018-1024 (in Chinese). [7] 邓明科,成 媛,翁世强,等.高温后高延性混凝土的抗压性能及微观结构[J].复合材料学报,2020,37(4):985-996. DENG M K, CHENG Y, WENG S Q, et al. Compressive properties and micro-structure of high ductility concrete exposed to elevated temperature[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 985-996 (in Chinese). [8] 李 黎,李宗利,高丹盈,等.高温对钢纤维-聚乙烯醇纤维-CaCO3晶须多尺度纤维/水泥复合材料弯曲性能和微观结构的影响[J].复合材料学报,2021,38(7):2326-2335. LI L, LI Z L, GAO D Y, et al. Influence of high temperature on flexural properties and micro structure of steel fiberpolyvinyl alcohol fiber-CaCO3 whisker multi-scale fibers/cement composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2326-2335 (in Chinese). [9] 丁明冬,杜红秀.混杂纤维对活性粉末混凝土高温后抗压强度的影响[J].硅酸盐通报,2017,36(8):2763-2767. DING M D, DU H X. Hybrid fiber on the influence of the reactive powder concrete compressive strength after high temperature[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2763-2767 (in Chinese). [10] 李海艳,郑文忠,罗百福.高温后RPC立方体抗压强度退化规律研究[J].哈尔滨工业大学学报,2012,44(4):17-22+49. LI H Y, ZHENG W Z, LUO B F. Experimental research on compressive strength degradation of reactive powder concrete after high temperature[J]. Journal of Harbin Institute of Technology, 2012, 44(4): 17-22+49 (in Chinese). [11] 贺一轩,杜红秀.RPC高温后抗折强度试验及红外检测[J].消防科学与技术,2019,38(5):615-617. HE Y X, DU H X. Flexural strength test and infrared detection of RPC after elevated temperature[J]. Fire Science and Technology, 2019, 38(5): 615-617 (in Chinese). [12] 李 根.掺聚丙烯纤维活性粉末混凝土高温后力学性能研究[J].新型建筑材料,2018,45(6):29-32+47. LI G. Study on mechanical properties of reactive powder concrete with polypropylene fiber after high temperatures[J]. New Building Materials, 2018, 45(6): 29-32+47 (in Chinese). [13] MAO Z H, ZHANG J C, LUO Z Z, et al. Behavior evaluation of hybrid fibre-reinforced reactive powder concrete after elevated temperatures[J]. Construction and Building Materials, 2021, 306: 124917. [14] 鞠 杨,刘红彬,刘金慧,等.活性粉末混凝土热物理性质的研究[J].中国科学:技术科学,2011,41(12):1584-1605. JU Y, LIU H B, LIU J H, et al. Study on Thermophysical properties of reactive powder concrete [J]. Scientia Sinica (Technologica), 2011, 41(12): 1584-1605 (in Chinese). [15] ZHENG W Z, LUO B F, WANG Y. Microstructure and mechanical properties of RPC containing PP fibres at elevated temperatures[J]. Magazine of Concrete Research, 2014, 66(8): 397-408. [16] ABID M, HOU X M, ZHENG W Z, et al. Effect of fibers on high-temperature mechanical behavior and microstructure of reactive powder concrete[J]. Materials (Basel, Switzerland), 2019, 12(2): 329. [17] CHANG Y F, CHEN Y H, SHEU M S, et al. Residual stress-strain relationship for concrete after exposure to high temperatures[J]. Cement and Concrete Research, 2006, 36(10): 1999-2005. [18] British Standard Institute. Eurocode 2: design of concrete structures-part 1.2: general rules-structural fire design: 1992-1-2: 2004[S]. BS EN, 1992. |