[1] BAANT Z P, YU Q, LI G H. Excessive long-time deflections of prestressed box girders. I: record-span bridge in Palau and other paradigms[J]. Journal of Structural Engineering, 2012, 138(6): 676-686. [2] BAANT Z P, YU Q, LI G H. Excessive long-time deflections of prestressed box girders. II: numerical analysis and lessons learned[J]. Journal of Structural Engineering, 2012, 138(6): 687-696. [3] GUO Q, SUN Y B, MI T. Assessment on long-term deflection of concrete beam bridges based on uncertainty quantification method[J]. Structures, 2021, 34: 3013-3027. [4] NEHDI M L. Only tall things cast shadows: opportunities, challenges and research needs of self-consolidating concrete in super-tall buildings[J]. Construction and Building Materials, 2013, 48: 80-90. [5] JIN Q X, LI V C. Development of lightweight engineered cementitious composite for durability enhancement of tall concrete wind towers[J]. Cement and Concrete Composites, 2019, 96: 87-94. [6] OUYANG X, SHI C J, WU Z M, et al. Experimental investigation and prediction of elastic modulus of ultra-high performance concrete (UHPC) based on its composition[J]. Cement and Concrete Research, 2020, 138: 106241. [7] 欧阳雪,史才军,史金华,等.超高性能混凝土受压力学性能及其弹性模量预测[J].硅酸盐学报,2021,49(2):296-304. OUYANG X, SHI C J, SHI J H, et al. Compressive mechanical properties and prediction for elastic modulus of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 296-304 (in Chinese). [8] BAZANT Z P, HUBLER M H. Theory of cyclic creep of concrete based on Paris law for fatigue growth of subcritical microcracks[J]. Journal of the Mechanics and Physics of Solids, 2014, 63: 187-200. [9] KONSTA-GDOUTOS M S, DANOGLIDIS P A, SHAH S P. High modulus concrete: effects of low carbon nanotube and nanofiber additions[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102295. [10] 肖金军,何伟能,李 纯,等.基于配束和材料优化的连续刚构桥下挠控制技术[J].桥梁建设,2021,51(6):31-38. XIAO J J, HE W N, LI C, et al. Deflection control techniques based on prestressing tendons arrangement and material optimization for continuous rigid-frame bridge[J]. Bridge Construction, 2021, 51(6): 31-38 (in Chinese). [11] 蒋正武,周 磊,李文婷.石灰岩骨料混凝土弹性模量与强度相关性研究[J].建筑材料学报,2014,17(4):649-653. JIANG Z W, ZHOU L, LI W T. Study on the correlation between elastic modulus and strength of concrete made with limestone aggregate[J]. Journal of Building Materials, 2014, 17(4): 649-653 (in Chinese). [12] WANG Q H, LI Z, ZHANG Y Z, et al. Influence of coarse coal gangue aggregates on elastic modulus and drying shrinkage behaviour of concrete[J]. Journal of Building Engineering, 2020, 32: 101748. [13] BEUSHAUSEN H, DITTMER T. The influence of aggregate type on the strength and elastic modulus of high strength concrete[J]. Construction and Building Materials, 2015, 74: 132-139. [14] WANG X H, WANG K J, TAYLOR P, et al. Assessing particle packing based self-consolidating concrete mix design method[J]. Construction and Building Materials, 2014, 70: 439-452. [15] CHENG Y H, ZHU B L, YANG S H, et al. Design of concrete mix proportion based on particle packing voidage and test research on compressive strength and elastic modulus of concrete[J]. Materials (Basel, Switzerland), 2021, 14(3): 623. [16] SUN R W, FANOURAKIS G C. An assessment of factors affecting the elastic modulus of concrete[J]. Structural Concrete, 2022(23): 593-603. [17] NG P L, KWAN A K H, LI L G. Packing and film thickness theories for the mix design of high-performance concrete[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2016, 17(10): 759-781. [18] ZHU W, CHEN Y, LI F X, et al. Design and preparation of high elastic modulus self-compacting concrete for pre-stressed mass concrete structures[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(3): 563-573. [19] YOUSUF S, SANCHEZ L F M, SHAMMEH S A. The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry[J]. Journal of Building Engineering, 2019, 25: 100815. [20] KLEIN N S, LENZ L A, MAZER W. Influence of the granular skeleton packing density on the static elastic modulus of conventional concretes[J]. Construction and Building Materials, 2020, 242: 118086. [21] LI V C, MAALEJ M. Toughening in cement based composites. Part I: Cement, mortar, and concrete[J]. Cement and Concrete Composites, 1996, 18(4): 223-237. [22] 刘加平,汤金辉,韩方玉.现代混凝土增韧防裂原理及应用[J].土木工程学报,2021,54(10):47-54+63. LIU J P, TANG J H, HAN F Y. Toughening and crack prevention of modern concrete: mechanisms and applications[J]. China Civil Engineering Journal, 2021, 54(10): 47-54+63 (in Chinese). [23] SHAH A A, RIBAKOV Y. Recent trends in steel fibered high-strength concrete[J]. Materials & Design, 2011, 32(8/9): 4122-4151. [24] 白 敏,牛荻涛,姜 磊,等.钢纤维改善混凝土力学性能和微观结构的研究[J].硅酸盐通报,2013,32(10):2084-2089. BAI M, NIU D T, JIANG L, et al. Research on improving the mechanical properties and microstructure of concrete with steel fiber[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(10): 2084-2089 (in Chinese). [25] 张秀芝,毕梦迪,刘同军,等.钢纤维混凝土中纤维分布特性影响因素研究进展[J].硅酸盐学报,2021,49(8):1732-1742. ZHANG X Z, BI M D, LIU T J, et al. Research progress in factors affecting fiber distribution in steel fiber concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1732-1742 (in Chinese). [26] 中华人民共和国交通运输部.公路工程水泥及水泥混凝土试验规程:JTG 3420—2020[S].北京:人民交通出版社,2020. Ministry of Transport of the People's Republic of China. Test procedure for cement and cement concrete of highway engineering: JTG 3420—2020[S]. Beijing: People's Communications Press, 2020 (in Chinese). [27] 中国工程建设标准化协会.超声回弹综合法检测混凝土强度技术规程:CECS 02—2005[S].北京:中国计划出版社,2005. China Engineering Construction Standardization Association. Technical specification for testing concrete strength by ultrasonic-rebound combined method: CECS 02—2005[S]. Beijing: China Planning Press, 2005 (in Chinese). [28] FURNAS C C. Grading aggregates-I.-mathematical relations for beds of broken solids of maximum density[J]. Industrial & Engineering Chemistry, 1931, 23(9): 1052-1058. [29] ZHENG J M, CARLSON W B, REED J S. The packing density of binary powder mixtures[J]. Journal of the European Ceramic Society, 1995, 15(5): 479-483. [30] 李 良,龙广成,谢友均,等.基于三维扫描与数值技术的粗集料形状特征与级配研究[J].铁道科学与工程学报,2022,19(3):714-721. LI L, LONG G C, XIE Y J, et al. Research on the shape feature and gradation of coarse aggregate based on 3D scanning and numerical technology[J]. Journal of Railway Science and Engineering, 2022, 19(3): 714-721 (in Chinese). [31] 肖柏林,杨志强,高 谦,等.混合骨料堆积模型研究与新型模型建立[J].材料导报,2018,32(14):2400-2406. XIAO B L, YANG Z Q, GAO Q, et al. Discussion on packing density models of combined aggregate and a new solution[J]. Materials Review, 2018, 32(14): 2400-2406 (in Chinese). [32] LIU J Z, HAN F Y, CUI G, et al. Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete[J]. Construction and Building Materials, 2016, 121: 310-318. [33] GULER S, ÖKER B, AKBULUT Z F. Workability, strength and toughness properties of different types of fiber-reinforced wet-mix shotcrete[J]. Structures, 2021, 31: 781-791. [34] HAN J H, ZHAO M M, CHEN J Y, et al. Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete[J]. Construction and Building Materials, 2019, 209: 577-591. [35] 严捍东,吴仕成,桂苗苗.再生粗骨料最大堆积密度及其对混凝土性能影响[J].建筑材料学报,2015,18(3):482-486. YAN H D, WU S C, GUI M M. Maximum packing density of recycled coarse aggregate and its effects on properties of concrete[J]. Journal of Building Materials, 2015, 18(3): 482-486 (in Chinese). [36] RILEM D R. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J].Materials and Structures, 1985, 18(4): 287-290. [37] 中华人民共和国住房和城乡建设部.钢纤维混凝土:JG/T 472—2015[S].北京:中国标准出版社,2015. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Steel fiber reinforced concrete: JG/T 472—2015[S]. Beijing: China Standard Press, 2015 (in Chinese). [38] 高丹盈,赵亮平,冯 虎,等.钢纤维混凝土弯曲韧性及其评价方法[J].建筑材料学报,2014,17(5):783-789. GAO D Y, ZHAO L P, FENG H, et al. Flexural toughness and it's evaluation method of steel fiber reinforced concrete[J]. Journal of Building Materials, 2014, 17(5): 783-789 (in Chinese). |