[1] ASLANI F, MA G W, YIM WAN D L, et al. Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules[J]. Journal of Cleaner Production, 2018, 182: 553-566. [2] GUO H, SHI C J, GUAN X M, et al. Durability of recycled aggregate concrete: a review[J]. Cement and Concrete Composites, 2018, 89: 251-259. [3] GIWANGKARA G G, MOHAMED A, KHALID N H A, et al. Recycled concrete aggregate as a road base material[J]. IOP Conference Series: Materials Science and Engineering, 2019, 527(1): 012061. [4] SHI C J, LI Y K, ZHANG J K, et al. Performance enhancement of recycled concrete aggregate: a review[J]. Journal of Cleaner Production, 2016, 112: 466-472. [5] 熊优优.超高性能路面混凝土力学特性及破坏规律研究[D].长沙:中南林业科技大学,2021. XIONG Y Y. Study on mechanical properties and failure laws of ultra-high performance pavement concrete[D]. Changsha: Central South University of Forestry & Technology, 2021 (in Chinese). [6] FENG J J, YIN G S, TUO H L, et al. Parameter optimization and regression analysis for multi-index of hybrid fiber-reinforced recycled coarse aggregate concrete using orthogonal experimental design[J]. Construction and Building Materials, 2021, 267: 121013. [7] FENG J J, YIN G S, TUO H L, et al. Uniaxial compressive behavior of hook-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2021, 304: 124559. [8] 陈图真.钢纤维和聚丙烯粗纤维改性再生混凝土力学性能试验研究[D].广州:广东工业大学,2015. CHEN T Z. Experimental study on mechanical properties of steel fiber and macro polypropylene fiber reinforced recycled concrete[D]. Guangzhou: Guangdong University of Technology, 2015 (in Chinese). [9] 石振武,解 飞.基于响应面分析法的钢纤维再生混凝土耐磨性试验研究[J].公路工程,2015,40(1):143-147. SHI Z W, XIE F. Experimental research of abrasion resistance of steel fiber recycled concrete based on response surface methodology[J]. Highway Engineering, 2015, 40(1): 143-147 (in Chinese). [10] 孔祥清,高化东,刚建明,等.钢-聚丙烯混杂纤维再生混凝土弯曲韧性研究[J].硅酸盐通报,2018,37(9):2729-2736. KONG X Q, GAO H D, GANG J M, et al. Study on flexural toughness of steel-polypropylene hybrid fiber recycled aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2729-2736 (in Chinese). [11] 魏 康,李 犇,孙 峤.玄武岩纤维改善再生混凝土抗氯离子渗透性能研究[J].硅酸盐通报,2022,41(5):1656-1662. WEI K, LI B, SUN Q. Improving chloride ion penetration resistance of recycled concrete by basalt fiber[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1656-1662 (in Chinese). [12] 罗素蓉,林扬兴,肖建庄.钢-PVA混杂纤维高强再生骨料混凝土断裂性能[J].建筑结构学报,2020,41(12):93-102. LUO S R, LIN Y X, XIAO J Z. Fracture behaviors of hybrid steel-PVA fiber reinforced high strength recycled aggregate concrete[J]. Journal of Building Structures, 2020, 41(12): 93-102 (in Chinese). [13] 冯士刚,艾 芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J].电工技术学报,2007,22(12):146-151. FENG S G, AI Q. Application of fast and elitist non-dominated sorting generic algorithm in multi-objective reactive power optimization[J]. Transactions of China Electrotechnical Society, 2007, 22(12): 146-151 (in Chinese). [14] 于小芹,马云瑞,余 静.基于熵权TOPSIS模型的山东省海岸带生态修复政策效果评价研究[J].海洋环境科学,2022,41(1):74-79. YU X Q, MA Y R, YU J. Evaluation of coastal ecological restoration policy effect based on entropy-weight TOPSIS model in Shandong province[J]. Marine Environmental Science, 2022, 41(1): 74-79 (in Chinese). [15] 张学兵.再生混凝土改性及配合比设计研究[D].长沙:湖南大学,2015. ZHANG X B. Modification and mix proportion design of recycled concrete[D]. Changsha: Hunan University, 2015 (in Chinese). [16] 周 聪,郑泽宇,孔祥清,等.高性能聚丙烯纤维对再生混凝土力学性能的影响[J].科学技术与工程,2021,21(1):303-309. ZHOU C, ZHENG Z Y, KONG X Q, et al. Influence of high performance polypropylene fibers on mechanical property of recycled aggregate concrete[J]. Science Technology and Engineering, 2021, 21(1): 303-309 (in Chinese). [17] 王英鹏,徐义华,孙海俊,等.基于响应面法的火箭发动机喷管型面优化设计[J].航空动力学报,2022,37(1):214-224. WANG Y P, XU Y H, SUN H J, et al. Optimization design for nozzle contour of rocket engine based on response surface method[J]. Journal of Aerospace Power, 2022, 37(1): 214-224 (in Chinese). [18] 吕官记,季 韬.基于响应面法的三元聚合物砂浆力学性能[J].建筑材料学报,2021,24(5):970-976. LÜ G J, JI T. Mechanical properties of ternary polymer mortar based on response surface method[J]. Journal of Building Materials, 2021, 24(5): 970-976 (in Chinese). [19] 王 浩.钢/聚丙烯混杂纤维混凝土的试验研究[D].西安:西北工业大学,2005. WANG H. Experimental study on steel/polypropylene hybrid fiber reinforced concrete[D]. Xi'an: Northwestern Polytechnical University, 2005 (in Chinese). [20] 吴 涛,杨 雪,刘 喜.钢-聚丙烯混杂纤维自密实轻骨料混凝土性能[J].建筑材料学报,2021,24(2):268-275+282. WU T, YANG X, LIU X. Properties of self-compacting lightweight concrete reinforced with hybrid steel and polypropylene fibers[J]. Journal of Building Materials, 2021, 24(2): 268-275+282 (in Chinese). [21] 张 萌,骆文进.混杂纤维轻骨料混凝土力学性能试验研究[J].混凝土与水泥制品,2021(5):48-52. ZHANG M, LUO W J. Experimental study on mechanical properties of hybrid fiber lightweight aggregate concrete[J]. China Concrete and Cement Products, 2021(5): 48-52 (in Chinese). [22] 梅国栋,李继祥,刘肖凡,等.混杂纤维混凝土抗弯性能及混杂效应试验研究[J].混凝土,2013(2):21-24. MEI G D, LI J X, LIU X F, et al. Hybrid fiber reinforced concrete flexural behavior and hybrid effects[J]. Concrete, 2013(2): 21-24 (in Chinese). [23] 赵学涛,杨鼎宜,朱从香,等.砂率对超高性能混凝土的性能研究[J].混凝土,2021(1):17-19+24. ZHAO X T, YANG D Y, ZHU C X, et al. Study on sand ratio of ultra high performance concrete[J]. Concrete, 2021(1): 17-19+24 (in Chinese). [24] 翁兴中,张广显,韩 照,等.砂率对道面混凝土性能的影响[J].西安建筑科技大学学报(自然科学版),2013,45(2):239-244. WENG X Z, ZHANG G X, HAN Z, et al. Effects of sand ratio on performance of pavement concrete[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2013, 45(2): 239-244 (in Chinese). [25] 牛颖兰.砂率对混凝土主要性能的影响分析[J].中国建材科技,2014,23(2):12-13+26. NIU Y L. Sand ratio on the properties of concrete are mainly impact analysis[J]. China Building Materials Science & Technology, 2014, 23(2): 12-13+26 (in Chinese). [26] 霍彦霖,孙华阳,刘天安,等.混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能[J/OL].复合材料学报:1-15 [2022-07-02].https://doi.org/10.13801/j.cnki.fhclxb.20220623.005. HUO Y L, SUN H Y, LIU T A, et al. Flexural impact resistance of hybrid fiber reinforced strain-hardening cementitious composites[J/OL]. Acta Materiae Compositae Sinica: 1-15[2022-07-02]. https://doi.org/10.13801/j.cnki.fhclxb.20220623.005 (in Chinese). [27] 王振波,王鹏宇,朱凤强,等.混杂纤维ECC的纤维分布规律及力学性能研究[J/OL].华中科技大学学报(自然科学版):1-7 [2022-07-02].https://doi.org/10.13245/j.hust.239134. WANG Z B, WANG P Y, ZHU F Q, et al. Study on fiber distribution and mechanical properties of hybrid fiber ECC[J/OL]. Journal of Huazhong University of Science and Technology(Natural Science Edition): 1-7[2022-07-02]. https://doi.org/10.13245/j.hust.239134 (in Chinese). [28] 伍松云.高抗折高耐磨路面混凝土试验研究[D].长沙:中南林业科技大学,2019. WU S Y. Experimental study on high flexural and high wear resistance pavement concrete[D]. Changsha: Central South University of Forestry & Technology, 2019 (in Chinese). [29] 张 认.复合纤维水泥混凝土路用性能试验研究[D].长沙:长沙理工大学,2020. ZHANG R. Road performance of composite fiber cement concrete experimental research[D]. Changsha: Changsha University of Science & Technology, 2020 (in Chinese). [30] 张恒东.钢纤维水泥混凝土路面的应用研究[J].北方交通,2016(5):113-115+118. ZHANG H D. Research on application of steel fiber concrete pavement[J]. Northern Communications, 2016(5): 113-115+118 (in Chinese). [31] 肖卓琳.钢纤维混凝土耐磨性影响因素试验研究[J].山西建筑,2016,42(31):119-120. XIAO Z L. Experimental study on influence factors of abrasion resistance of steel fiber reinforced concrete[J]. Shanxi Architecture, 2016, 42(31): 119-120 (in Chinese). [32] 彭松枭.再生混凝土耐磨性能研究[D].长沙:中南大学,2009. PENG S X. Research on the wear resistance of recycled concrete[D]. Changsha: Central South University, 2009 (in Chinese). [33] 徐政华,曹延明.基于熵权TOPSIS模型的长春市水资源承载力评价[J/OL].安全与环境学报,2022,22(5):2900-2907. XU Z H, CAO Y M. Evaluation of water resources carrying capacity in changchun city based on entropy weight TOPSIS model[J/OL]. Journal of Safety and Environment, 2022, 22(5): 2900-2907 (in Chinese). |