[1] 徐瑞御,肖庆峰.火灾高温下轻骨料混凝土强度和结构损伤规律研究[J].消防科学与技术,2019,38(6):760-763. XU R Y, XIAO Q F. Study on strength and structure damage rules of lightweight aggregate concrete under fire temperatures[J]. Fire Science and Technology, 2019, 38(6): 760-763 (in Chinese). [2] MENG Q S, QIN Q L, YANG H M, et al. Effects of high-low temperature cycles on the performance of coral aggregate concrete based on field specimens and laboratory accelerated tests[J]. Construction and Building Materials, 2022, 325: 126596. [3] SUESCUM-MORALES D, RÍOS J D, DE LA CONCHA A M, et al. Effect of moderate temperatures on compressive strength of ultra-high-performance concrete: a microstructural analysis[J]. Cement and Concrete Research, 2021, 140: 106303. [4] SADRMOMTAZI A, GASHTI S H, TAHMOURESI B. Residual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures[J]. Construction and Building Materials, 2020, 230: 116969. [5] HAY R, DUNG N T, LESIMPLE A, et al. Mechanical and microstructural changes in reactive magnesium oxide cement-based concrete mixes subjected to high temperatures[J]. Cement and Concrete Composites, 2021, 118: 103955. [6] CHEN Z P, XU R T, LIANG H R. Residual mechanical properties and numerical analysis of recycled pebble aggregate concrete after high temperature exposure and cooled by fire hydrant[J]. Construction and Building Materials, 2022, 319: 126137. [7] MENG F D, ZHAI Y, LI Y B, et al. Research on the effect of pore characteristics on the compressive properties of sandstone after freezing and thawing[J]. Engineering Geology, 2021, 286: 106088. [8] ZAHEDI A, KOMAR A, SANCHEZ L F M, et al. Global assessment of concrete specimens subjected to freeze-thaw damage[J]. Cement and Concrete Composites, 2022, 133: 104716. [9] ZHAO H T, DING J, HUANG Y Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials[J]. Structural Concrete, 2019, 20(5): 1750-1762. [10] ZHAO H T, WU X, HUANG Y Y, et al. Investigation of moisture transport in cement-based materials using low-field nuclear magnetic resonance imaging[J]. Magazine of Concrete Research, 2021, 73(5): 252-270. [11] 林乙玄.不同高温作用下混凝土的损伤破坏研究[J].散装水泥,2022(1):184-187. LIN Y X. Study on damage and failure of concrete under different high temperatures[J]. Bulk Cement, 2022(1): 184-187 (in Chinese). [12] 龚 哲,杨卫星,张 戎.混凝土火灾损伤本构模型研究[J].地下空间与工程学报,2022,18(3):769-778. GONG Z, YANG W X, ZHANG R. A damage constitutive model for concrete subjected to fire[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(3): 769-778 (in Chinese). [13] ZHAI Y, DENG Z C, LI N, et al. Study on compressive mechanical capabilities of concrete after high temperature exposure and thermo-damage constitutive model[J]. Construction and Building Materials, 2014, 68: 777-782. [14] 唐世斌,唐春安,梁正召,等.混凝土热传导与热应力的细观特性及热开裂过程研究[J].土木工程学报,2012,45(2):11-19. TANG S B, TANG C N, LIANG Z Z, et al. Study of thermal conduction and thermal stress of concrete at mesoscopic level and its thermal cracking processes[J]. China Civil Engineering Journal, 2012, 45(2): 11-19 (in Chinese). [15] ZHANG A, YANG W C, GE Y, et al. Study on the hydration and moisture transport of white cement containing nanomaterials by using low field nuclear magnetic resonance[J]. Construction and Building Materials, 2020, 249: 118788. [16] 李天降,李子丰,赵彦超,等.核磁共振与压汞法的孔隙结构一致性研究[J].天然气工业,2006,26(10):57-59+174. LI T J, LI Z F, ZHAO Y C, et al. Consistency of pore structures between nmr and mercury intrusion method[J]. Natural Gas Industry, 2006, 26(10): 57-59+174 (in Chinese). [17] ZHAO Y, WANG C L, NING L, et al. Pore and fracture development in coal under stress conditions based on nuclear magnetic resonance and fractal theory[J]. Fuel, 2022, 309: 122112. [18] ZHAI C, QIN L, LIU S M, et al. Pore structure in coal: pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction[J]. Energy & Fuels, 2016, 30(7): 6009-6020. [19] 张洪伟,万志军,周长冰,等.干热岩高温力学特性及热冲击效应分析[J].采矿与安全工程学报,2021,38(1):138-145. ZHANG H W, WAN Z J, ZHOU C B, et al. High temperature mechanical properties and thermal shock effect of hot dry rock[J]. Journal of Mining & Safety Engineering, 2021, 38(1): 138-145 (in Chinese). [20] 孙中光,姜德义,谢凯楠,等.基于低场磁共振的北山花岗岩热损伤研究[J].煤炭学报,2020,45(3):1081-1088. SUN Z G, JIANG D Y, XIE K N, et al. Thermal damage study of Beishan granite based on low field magnetic resonance[J]. Journal of China Coal Society, 2020, 45(3): 1081-1088 (in Chinese). [21] 丁发兴,余志武.混凝土受拉力学性能统一计算方法[J].华中科技大学学报(城市科学版),2004,21(3):29-34. DING F X, YU Z W. Unified calculation method of mechanical properties of concrete in tension[J]. Journal of Wuhan Urban Construction Institute, 2004, 21(3): 29-34 (in Chinese). [22] 唐世斌,罗 江,唐春安.低温诱发岩石破裂的理论与数值模拟研究[J].岩石力学与工程学报,2018,37(7):1596-1607. TANG S B, LUO J, TANG C A. Theoretical and numerical study on the cryogenic fracturing in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1596-1607 (in Chinese). [23] 郤保平,吴阳春,赵阳升,等.不同冷却模式下花岗岩强度对比与热破坏能力表征试验研究[J].岩石力学与工程学报,2020,39(2):286-300. XI B P, WU Y C, ZHAO Y S, et al. Experimental investigations of compressive strength and thermal damage capacity characterization of granite under different cooling modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 286-300 (in Chinese). |