[1] LI X Y, TAO X Y, XIA Y, et al. Preparation and characterization of glassy waste forms based on SrF2-Fe2O3-PbO/Bi2O3-P2O5 system[J]. Journal of Non-Crystalline Solids, 2022, 581: 121303. [2] 李秀英,肖卓豪,陶歆月,等.高水平放射性废物固化用磷酸盐玻璃的研究进展[J].材料导报,2021,35(5):5032-5039. LI X Y, XIAO Z H, TAO X Y, et al. Research progress on the vitrification of high level radioactive wastes in phosphate glassy matrices[J]. Materials Reports, 2021, 35(5): 5032-5039 (in Chinese). [3] KUMAR S P, BUVANESWARI G. Synthesis of apatite phosphates containing Cs+, Sr2+ and Re3+ ions and chemical durability studies[J]. Materials Research Bulletin, 2013, 48(2): 324-332. [4] Li X Y, TAO X Y, XIAO Z H, et al. Structure and properties of iron phosphate wasteforms loaded with simulated radioactive waste enriched in SrO and alkali metal oxides[J]. Journal of Ceramic, 2020, 41(6): 904-912. [5] 高 杰,叶 钢,陈崧哲,等.高放废液除锶技术的研究进展[J].原子能科学技术,2013,47(6):911-919. GAO J, YE G, CHEN S Z, et al. Development of partitioning of 90Sr from high level liquid waste[J]. Atomic Energy Science and Technology, 2013, 47(6): 911-919 (in Chinese). [6] MESKO M G, DAY D E, BUNKER B C. Immobilization of CsCl and SrF2 in iron phosphate glass[J]. Waste Management, 2000, 20(4): 271-278. [7] 林如山,何 辉,唐洪彬,等.我国乏燃料干法后处理技术研究现状与发展[J].原子能科学技术,2020,54(s1):115-125. LIN R S, HE H, TANG H B, et al. Progress and development of dry reprocessing technology of spent fuel in China[J]. Atomic Energy Science and Technology, 2020, 54(s1): 115-125 (in Chinese). [8] LIU X Y, QIAO Y B, QIAN Z H, et al. Research on chemical durability of iron phosphate glass wasteforms vitrifying SrF2 and CeF3[J]. Journal of Nuclear Materials, 2018, 508: 286-291. [9] SALES B C, BOATNER L A. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste[J]. Science, 1984, 226(4670): 45-48. [10] SHIH P Y. Properties and FTIR spectra of lead phosphate glasses for nuclear waste immobilization[J]. Materials Chemistry and Physics, 2003, 80(1): 299-304. [11] REIS S T, KARABULUT M, DAY D E. Structural features and properties of lead-iron-phosphate nuclear wasteforms[J]. Journal of Nuclear Materials, 2002, 304(2/3): 87-95. [12] MARASINGHE G K, KARABULUT M, RAY C S, et al. Properties and structure of vitrified iron phosphate nuclear wasteforms[J]. Journal of Non-Crystalline Solids, 2000, 263/264: 146-154. [13] DAY D E, WU Z, RAY C S, et al. Chemically durable iron phosphate glass wasteforms[J]. Journal of Non-Crystalline Solids, 1998, 241(1): 1-12. [14] OKURA T, MIYACHI T, MONMA H. Properties and vibrational spectra of magnesium phosphate glasses for nuclear waste immobilization[J]. Journal of the European Ceramic Society, 2006, 26(4/5): 831-836. [15] 孙亚平.熔盐堆含氟放射性废物磷酸盐固化方案及固化体性能研究[D].上海:中国科学院研究生院(上海应用物理研究所),2016:47-48. SUN Y P. Vitrification of radioactive wastes containing fluorides from MSRs by phosphates and the properties of waste forms[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2016: 47-48 (in Chinese). [16] SUN Y P, XIA X B, QIAO Y B, et al. Immobilization of simulated radioactive fluoride waste in phosphate glass[J]. Science China Materials, 2016, 59(4): 279-286. [17] YUDINTSEV S V, SHIRYAEV A A. Thermal stability of glass with simulators of chloride highly radioactive wastes[J]. Doklady Physics, 2018, 63(12): 513-516. [18] EHRT D, JENA F S U. Phosphate and fluoride phosphate optical glasses: properties, structure and applications[J]. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 2015, 56(6): 217-234. [19] BUENO L A, MESSADDEQ Y, DIAS FILHO F A, et al. Study of fluorine losses in oxyfluoride glasses[J]. Journal of Non-Crystalline Solids, 2005, 351(52/53/54): 3804-3808. [20] 廖其龙,陈奎儒,王 辅,等.模拟高钠高放废物铁硼磷酸盐玻璃固化体的结构和性能[J].硅酸盐学报,2014,42(10):1343-1348. LIAO Q L, CHEN K R, WANG F, et al. Structure and performances of iron borophosphate glass wasteforms with simulated high sodium high level radioactive waste[J]. Journal of the Chinese Ceramic Society, 2014, 42(10): 1343-1348 (in Chinese). [21] LI X Y, XIAO Z H, HE Y T, et al. Crystallization behavior, structure and properties of glasses in SrO-Fe2O3-P2O5 system[J]. Journal of Non-Crystalline Solids, 2019, 523: 119588. [22] LI X Y, YANG H M, SONG X L, et al. Glass forming region, structure and properties of zinc iron phosphate glasses[J]. Journal of Non-Crystalline Solids, 2013, 379: 208-213. [23] MA L N, BROW R K, GHUSSN L, et al. Thermal stability of Na2O-FeO-Fe2O3-P2O5 glasses[J]. Journal of Non-Crystalline Solids, 2015, 409: 131-138. [24] DJOUAMA T, BOUTARFAIA A, POULAIN M. Fluorophosphate glasses containing manganese[J]. Journal of Physics and Chemistry of Solids, 2008, 69(11): 2756-2763. [25] LI X Y, XIAO Z H, LUO M H, et al. Low melting glasses in ZnO-Fe2O3-P2O5 system with high chemical durability and thermal stability for sealing or waste immobilization[J]. Journal of Non-Crystalline Solids, 2017, 469: 62-69. [26] SHIH P Y, YUNG S W, CHIN T S. FTIR and XPS studies of P2O5-Na2O-CuO glasses[J]. Journal of Non-Crystalline Solids, 1999, 244(2/3): 211-222. [27] JERMOUMI T, HASSAN S, HAFID M. Structural investigation of vitreous Barium zinc mixed metaphosphate[J]. Vibrational Spectroscopy, 2003, 32(2): 207-213. [28] EFIMOV A M. IR fundamental spectra and structure of pyrophosphate glasses along the 2ZnO·P2O5-2Me2O·P2O5 join (Me being Na and Li)[J]. Journal of Non-Crystalline Solids, 1997, 209(3): 209-226. [29] LI X Y, LU A X, YANG H M. Structure of ZnO-Fe2O3-P2O5 glasses probed by Raman and IR spectroscopy[J]. Journal of Non-Crystalline Solids, 2014, 389: 21-27. |