[1] MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263. [2] YAN L, CHU F L, TUO W Y, et al. Review of research on basalt fibers and basalt fiber-reinforced composites in China (I): physicochemical and mechanical properties[J]. Polymers and Polymer Composites, 2021, 29(9): 1612-1624. [3] 张兰芳,尹玉龙,刘晶伟,等.玄武岩纤维增强混凝土力学性能的研究[J].硅酸盐通报,2014,33(11):2834-2837. ZHANG L F, YIN Y L, LIU J W, et al. Mechanical properties study on basalt fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11): 2834-2837 (in Chinese). [4] KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface[J]. Composites Part B: Engineering, 2020, 192: 108011. [5] 王伟宏,卢国军.硅烷偶联剂处理玄武岩纤维增强木塑复合材料[J].复合材料学报,2013,30(s1):315-320. WANG W H, LU G J. The silane coupling agent treatment of basalt fibers reinforced wood-plastic composite[J]. Acta Materiae Compositae Sinica, 2013, 30(s1): 315-320 (in Chinese). [6] 和晋川,汪国庆,于人同,等.纤维表面改性对PA66/玄武岩纤维复合材料性能影响[J].工程塑料应用,2021,49(5):125-130. HE J C, WANG G Q, YU R T, et al. Effect of fiber surface modification on the performance of PA66/basalt fiber composite[J]. Engineering Plastics Application, 2021, 49(5): 125-130 (in Chinese). [7] 李 静,申士杰,李伟娜,等.酸刻蚀对玄武岩纤维表面偶联剂吸附量及纤维/环氧树脂复合材料力学性能的影响[J].复合材料学报,2014,31(4):888-894. LI J, SHEN S J, LI W N, et al. Effects of acid modification on coupling agent amount of basalt fiber surface and mechanical property of BF/epoxy composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 888-894 (in Chinese). [8] YAO L R, LI M, WU Q, et al. Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy[J]. Applied Surface Science, 2012, 263: 326-333. [9] 曾 瑶,俞科静,钱 坤.玄武岩纤维表面改性及界面效应[J].材料科学与工程学报,2019,37(4):612-618. ZENG Y, YU K J, QIAN K. Study on surface modification and interfacial effect of basalt fiber[J]. Journal of Materials Science and Engineering, 2019, 37(4): 612-618 (in Chinese). [10] KURNIAWAN D, KIM B S, LEE H Y, et al. Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites[J]. Composites Part B: Engineering, 2012, 43(3): 1010-1014. [11] 别依诺,朱四荣,贺 攀,等.纳米SiO2硅烷协同改性对玄武岩纤维/环氧树脂复合材料力学性能及蠕变性能的影响[J].复合材料学报:1-11[2022-04-22].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=FUHE20210927000&uniplatform=NZKPT&v=HRuPfJbSla-00e-2lwv6K3BqXOQX3WnrGJ0wxF3gRkqHiPOeoeJ1iJzmAjHzOpbR. BIE Y N, ZHU S R, HE P, et al. Effect of nano-SiO2 particles-silane synergistic modification on mechanical properties and creep properties of basalt fiber/epoxy composites[J]. Acta Mater Compos Sin: 1-11[2022-04-22]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=FUHE20210927000&uniplatform=NZKPT&v=HRuPfJbSla-00e-2lwv6K3BqXOQX3WnrGJ0wxF3gRkqHiPOeoeJ1iJzmAjHzOpbR (in Chinese). [12] JAIN N, SINGH V K, CHAUHAN S. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites[J]. Journal of the Mechanical Behavior of Materials, 2017, 26(5/6): 205-211. [13] 姚良博,谭 晶,杨卫民,等.激光与碳纤维相互作用的研究现状及发展趋势[J].材料导报,2017,31(s2):392-397+402. YAO L B, TAN J, YANG W M, et al. Research status and development trend of interaction between laser and carbon fiber[J]. Materials Review, 2017, 31(s2): 392-397+402 (in Chinese). [14] 张群莉,王 梁,梅雪松,等.激光表面改性技术发展研究[J].中国工程科学,2020,22(3):71-77. ZHANG Q L, WANG L, MEI X S, et al. Development of laser surface modification technology[J]. Strategic Study of CAE, 2020, 22(3): 71-77 (in Chinese). [15] TARAKANOV B M. Effect of the conditions of laser treatment on the thermal and strength indexes of polyacrylonitrile fibres[J]. Fibre Chemistry, 1996, 28(3): 151-155. [16] FREITAG C, WEBER R, GRAF T. Polarization dependence of laser interaction with carbon fibers and CFRP[J]. Optics Express, 2014, 22(2): 1474-1479. [17] SAJZEW R, SCHRÖDER J, KUNZ C, et al. Femtosecond laser-induced surface structures on carbon fibers[J]. Optics Letters, 2015, 40(24): 5734-5737. [18] BLAKER J J, ANTHONY D B, TANG G, et al. Property and shape modulation of carbon fibers using lasers[J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16351-16358. [19] WIENER J, SHAHIDI S. Morphological and mechanical changes of glass fibers mat by CO2 laser[J]. The Journal of the Textile Institute, 2014, 105(2): 187-195. [20] 邵友林,王伯羲.碳纤维的表面除胶及表征[J].复合材料学报,2002,19(4):29-32. SHAO Y L, WANG B X. Surface desizing and indication of carbon fiber[J]. Acta Materiae Compositae Sinica, 2002, 19(4): 29-32 (in Chinese). [21] 国家质量监督检验检疫总局,中国国家标准化管理委员会.碳纤维 纤维直径和横截面积的测定:GB/T 29762—2013[S].北京:中国标准出版社,2014. General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Carbon fiber fiber diameter and cross-sectional area determination: GB/T 29762—2013[S]. Beijing: Standards Press of China, 2014 (in Chinese). [22] 国家质量监督检验检疫总局,中国国家标准化管理委员会.碳纤维 单丝拉伸性能的测定:GB/T 31290—2014[S].北京:中国标准出版社,2015. General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Determination of tensile properties of carbon fiber monofilament: GB/T 31290—2014[S]. Beijing: Standards Press of China, 2015 (in Chinese). [23] 国家质量监督检验检疫总局,中国国家标准化管理委员会.树脂浇铸体性能试验方法:GB/T 2567—2008[S].北京:中国标准出版社,2009. General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Resin casting performance test method: GB/T 2567—2008[S]. Beijing: Standards Press of China, 2009 (in Chinese). [24] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, 1921, 221(2):163-198. [25] YUCE H H, VARACHI J P, KILMER J P, et al. Optical fiber corrosion: coating contribution to zero-stress aging[C]//Digest of Conference on Optical Fiber Communication. San Jose, California. Washington, D.C.: OSA, 1992. [26] KURKJIAN C R, SIMPKINS P G, INNISS D. Strength, degradation, and coating of silica lightguides[J]. Journal of the American Ceramic Society, 1993, 76(5): 1106-1112. [27] 贺 福.碳纤维及其应用技术[M].北京:化学工业出版社,2004. HE F. Carbon fiber and its application technology[M]. Beijing: Chemical Industry Press, 2004 (in Chinese). [28] MECHOLSKY J J, RICE R W, FREIMAN S W. Prediction of fracture energy and flaw size in glasses from measurements of mirror size[J]. Journal of the American Ceramic Society, 1974, 57(10): 440-443. [29] BANSAL G K, DUCKWORTH W H. Fracture stress as related to flaw and fracture mirror sizes[J]. Journal of the American Ceramic Society, 1977, 60(7/8): 304-310. [30] FEIH S, THRANER A, LILHOLT H. Tensile strength and fracture surface characterisation of sized and unsized glass fibers[J]. Journal of Materials Science, 2005, 40(7): 1615-1623. [31] BHAT T, FORTOMARIS D, KANDARE E, et al. Properties of thermally recycled basalt fibres and basalt fibre composites[J]. Journal of Materials Science, 2018, 53(3): 1933-1944. [32] MANYLOV M S, GUTNIKOV S I, POKHOLOK K V, et al. Crystallization mechanism of basalt glass fibers in air[J]. Mendeleev Communications, 2013, 23(6): 361-363. [33] LIPATOV Y V, ARKHANGELSKY I V, DUNAEV A V, et al. Crystallization of zirconia doped basalt fibers[J]. Thermochimica Acta, 2014, 575: 238-243. [34] GUTNIKOV S I, MANYLOV M S, LIPATOV Y V, et al. Effect of the reduction treatment on the basalt continuous fiber crystallization properties[J]. Journal of Non-Crystalline Solids, 2013, 368: 45-50. [35] WANG G J, LIU Y W, GUO Y J, et al. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surface and Coatings Technology, 2007, 201(15): 6565-6568. [36] 贺可音.硅酸盐物理化学[M].武汉:武汉工业大学出版社,1995. HE K Y. Silicate physical chemistry[M]. Wuhan: Wuhan University of Technology Press, 1995 (in Chinese). |