[1] CUI L, HAO X J, TANG Y, et al. Effect of B2O3 on physical properties of LZAS vitrified bond and mechanical properties of diamond composites[J]. International Journal of Refractory Metals and Hard Materials, 2015, 52: 50-54. [2] HAN J, HE F, WANG L L, et al. Effect of WO3 on the structure and properties of low sintering temperature and high strength vitrified bonds[J]. Journal of Alloys and Compounds, 2016, 679: 54-58. [3] WANG P F, LI Z H, LI J, et al. Effect of ZnO on the interfacial bonding between Na2O-B2O3-SiO2 vitrified bond and diamond[J]. Solid State Sciences, 2009, 11(8): 1427-1432. [4] XIA P, JIANG R R, LI Z H, et al. Effect of Y2O3 on the properties of vitrified bond and vitrified diamond composites[J]. Composites Part B: Engineering, 2014, 67: 515-520. [5] TANAKA T, IKAWA N, UENO N, et al. Ceramic aspect of vitrified bond for diamond grinding wheel[J]. Bull Jpn Soc Prec Eng, 1985, 19(3): 221-223. [6] HUANG S F, TSAI H L, LIN S T. Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix[J]. Materials Chemistry and Physics, 2004, 84(2/3): 251-258. [7] KOPAC J, KRAJNIK P. High-performance grinding: a review[J]. Journal of Materials Processing Technology, 2006, 175(1/2/3): 278-284. [8] 丁玉龙,苗卫鹏,骆苗地,等.陶瓷结合剂金刚石砂轮组织结构对其性能的影响[J].金刚石与磨料磨具工程,2020,40(4):19-23. DING Y L, MIAO W P, LUO M D, et al. Influence of structure of vitrified bond diamond grinding wheel on its performance[J]. Diamond & Abrasives Engineering, 2020, 40(4): 19-23 (in Chinese). [9] 周 琪.金刚石砂轮用陶瓷结合剂制备以及结构与性能的研究[D].武汉:武汉理工大学,2014. ZHOU Q. Preparation and research on structure and properties of vitrified bond for diamond grinding wheel[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). [10] GUO B J, JIANG H Y. Influence of Li2O addition on the performance of vitrified bond and vitrified diamond composites[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(4): 699-705. [11] SHI J, HE F, XIE J L, et al. Effects of Na2O/BaO ratio on the structure and the physical properties of low-temperature glass-ceramic vitrified bonds[J]. Ceramics International, 2018, 44(9): 10871-10877. [12] ZHANG C, ZHAO J, SUN X, et al. The synergistic effect of nano Y2O3/CeO2 and nano Al2O3/SiO2 on the properties of vitrified bond and vitrified bond CBN composites[J]. Ceramics International, 2020, 46(9): 14224-14231. [13] ZHANG Q B, ZHU Y M, LI Z H. Performance investigation of Li2O-Al2O3-4SiO2 based glass-ceramics with B2O3, Na3AlF6 and Na2O fluxes[J]. Journal of Non-Crystalline Solids, 2012, 358(3): 680-686. [14] LIU X P, QIAO A, WAN L, et al. Effect of ZrO2 content on the properties of diamond grinding wheel vitrified bond[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2014, 29(1): 19-22. [15] ZHU H C, HE J B, HONG T, et al. A rotary radiation structure for microwave heating uniformity improvement[J]. Applied Thermal Engineering, 2018, 141: 648-658. [16] YE J H, ZHU H C, LIAO Y H, et al. Implicit function and level set methods for computation of moving elements during microwave heating[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 4773-4784. |