硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (10): 3634-3646.
马娟, 程从密, 刘琪, 牛艳飞
收稿日期:
2022-06-09
修回日期:
2022-07-13
出版日期:
2022-10-15
发布日期:
2022-10-26
通讯作者:
程从密,博士,副教授。E-mail:397215506@qq.com
作者简介:
马娟(1988—),女,博士。主要从事多孔陶瓷、陶瓷膜和工程材料的研究。E-mail:mjmajuan@gzhu.edu.cn
基金资助:
MA Juan, CHENG Congmi, LIU Qi, NIU Yanfei
Received:
2022-06-09
Revised:
2022-07-13
Online:
2022-10-15
Published:
2022-10-26
摘要: 陶瓷膜因具有机械强度高、耐高温、化学稳定性好、孔径分布可控、再生性能好和环境友好等诸多优势而被应用于众多行业。然而,其生产成本较高导致市场占有率低。此外,陶瓷膜还面临高渗透性和高选择性不能兼备的难题,这限制了其大规模应用。本文综述了采用廉价原料、添加烧结助剂和优化制备工艺来降低非对称陶瓷膜生产成本以及提高其性能方面的研究,分析了相关措施对陶瓷膜的利弊,并展望了陶瓷膜未来的发展方向和应用前景。
中图分类号:
马娟, 程从密, 刘琪, 牛艳飞. 低成本多孔非对称陶瓷过滤膜的制备与性能研究进展[J]. 硅酸盐通报, 2022, 41(10): 3634-3646.
MA Juan, CHENG Congmi, LIU Qi, NIU Yanfei. Research Progress on Preparation and Performance of Low Cost Porous Asymmetric Ceramic Filtration Membranes[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(10): 3634-3646.
[1] GOH P S, ISMAIL A F. A review on inorganic membranes for desalination and wastewater treatment[J]. Desalination, 2018, 434: 60-80. [2] 宋 浩.ZrO2陶瓷膜的制备及影响因素的研究[D].青岛:中国石油大学(华东),2017. SONG H. Study on the preparation of ZrO2 ceramic membrane and its influencing factors[D]. Qingdao: China University of Petroleum (East China), 2017 (in Chinese). [3] GHASEMZADEH K, SADATI TILEBON S M, BASILE A. Technoeconomic assessment of polymeric, ceramic, and metallic membrane integration in an advanced IGCC process for CO2 separation and capture[M]//Current Trends and Future Developments on (Bio-) Membranes. Amsterdam: Elsevier, 2018: 511-549. [4] QIU M H, FAN S, CAI Y Y, et al. Co-sintering synthesis of bi-layer titania ultrafiltration membranes with intermediate layer of sol-coated nanofibers[J]. Journal of Membrane Science, 2010, 365(1/2): 225-231. [5] DONG Y C, LIN B, WANG S L, et al. Cost-effective tubular cordierite micro-filtration membranes processed by co-sintering[J]. Journal of Alloys and Compounds, 2009, 477(1/2): 35-40. [6] ZHU L, CHEN M L, DONG Y C, et al. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion[J]. Water Research, 2016, 90: 277-285. [7] WANG Q, YU L, NAGASAWA H, et al. Tuning the microstructure of polycarbosilane-derived SiC(O) separation membranes via thermal-oxidative cross-linking[J]. Separation and Purification Technology, 2020, 248: 117067. [8] WEI W, ZHANG W Q, JIANG Q, et al. Preparation of non-oxide SiC membrane for gas purification by spray coating[J]. Journal of Membrane Science, 2017, 540: 381-390. [9] DAS B, CHAKRABARTY B, BARKAKATI P. Separation of oil from oily wastewater using low cost ceramic membrane[J]. Korean Journal of Chemical Engineering, 2017, 34(10): 2559-2569. [10] LI W Y, ZHANG L N, MU D H, et al. Treatment of restaurant waste water with Al2O3 ceramic membrane[J]. American Journal of Water Science and Engineering, 2018, 4(2): 28. [11] TANUDJAJA H J, HEJASE C A, TARABARA V V, et al. Membrane-based separation for oily wastewater: a practical perspective[J]. Water Research, 2019, 156: 347-365. [12] JEONG Y, HERMANOWICZ S W, PARK C. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater[J]. Water Research, 2017, 123: 86-95. [13] 张文民.高温过滤除尘用熔融石英膜的制备[D].广州:华南理工大学,2019. ZHANG W M. Preparation of fused silica membrane for high-temperature gas-solid separation[D]. Guangzhou: South China University of Technology, 2019 (in Chinese). [14] SANDRA F, BALLESTERO A, NGUYEN V L, et al. Silicon carbide-based membranes with high soot particle filtration efficiency, durability and catalytic activity for CO/HC oxidation and soot combustion[J]. Journal of Membrane Science, 2016, 501: 79-92. [15] JOKIĆ A, PAJČIN I, GRAHOVAC J, et al. Energy efficient turbulence promoter flux-enhanced microfiltration for the harvesting of rod-shaped bacteria using tubular ceramic membrane[J]. Chemical Engineering Research and Design, 2019, 150: 359-368. [16] ALMÁCIJA M C, IBÁÑEZ R, GUADIX A, et al. Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane[J]. Journal of Membrane Science, 2007, 288(1/2): 28-35. [17] NAVARRO-LISBOA R, HERRERA C, ZÚÑIGA R N, et al. Quinoa proteins (Chenopodium quinoa Willd.) fractionated by ultrafiltration using ceramic membranes: the role of pH on physicochemical and conformational properties[J]. Food and Bioproducts Processing, 2017, 102: 20-30. [18] ARYANTI P T P, SUBROTO E, MANGINDAAN D, et al. Semi-industrial high-temperature ceramic membrane clarification during starch hydrolysis[J]. Journal of Food Engineering, 2020, 274: 109844. [19] CIMINI A, MORESI M. Assessment of the optimal operating conditions for pale lager clarification using novel ceramic hollow-fiber membranes[J]. Journal of Food Engineering, 2016, 173: 132-142. [20] BINDES M M M, TERRA N M, PATIENCE G S, et al. Asymmetric Al2O3 and PES/Al2O3 hollow fiber membranes for green tea extract clarification[J]. Journal of Food Engineering, 2020, 277: 109889. [21] WALLBERG O, JÖNSSON A S, WIMMERSTEDT R. Ultrafiltration of kraft black liquor with a ceramic membrane[J]. Desalination, 2003, 156(1/2/3): 145-153. [22] VILLAIN-GAMBIER M, COURBALAY M, KLEM A, et al. Recovery of lignin and lignans enriched fractions from thermomechanical pulp mill process water through membrane separation technology: pilot-plant study and techno-economic assessment[J]. Journal of Cleaner Production, 2020, 249: 119345. [23] FRATTINI D, ACCARDO G, KWON Y. Perovskite ceramic membrane separator with improved biofouling resistance for yeast-based microbial fuel cells[J]. Journal of Membrane Science, 2020, 599: 117843. [24] CHERAGHIPOOR M, MOHEBBI-KALHORI D, NOROOZIFAR M, et al. Production of greener energy in microbial fuel cell with ceramic separator fabricated using native soils: effect of lattice and porous SiO2[J]. Fuel, 2021, 284: 118938. [25] MERINO-JIMENEZ I, GONZALEZ-JUAREZ F, GREENMAN J, et al. Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation[J]. Journal of Power Sources, 2019, 429: 30-37. [26] XU P, HUANG Y, KONG X L, et al. Hydrophilic membrane contactor for improving selective removal of SO2 by NaOH solution[J]. Separation and Purification Technology, 2020, 250: 117134. [27] SALEHI F. Current and future applications for nanofiltration technology in the food processing[J]. Food and Bioproducts Processing, 2014, 92(2): 161-177. [28] MA X L, LIN J Y S. Preparation chemistry of inorganic membranes[M]//Modern Inorganic Synthetic Chemistry. Amsterdam: Elsevier, 2017: 669-686. [29] LEE S J, KIM J H. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes[J]. Water Research, 2014, 48: 43-51. [30] 刘 洋.氧化铝陶瓷过滤膜的快速成型及性能研究[D].广州:华南理工大学,2018. LIU Y. Rapid formation and performance of alumina ceramic filtration membrane[D]. Guangzhou: South China University of Technology, 2018 (in Chinese). [31] SAMAEI S M, GATO-TRINIDAD S, ALTAEE A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters: a review[J]. Separation and Purification Technology, 2018, 200: 198-220. [32] YUE X D, KOH Y K K, NG H Y. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater[J]. Water Research, 2015, 86: 96-107. [33] ZOU D, FAN W, XU J R, et al. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions[J]. Journal of Membrane Science, 2021, 621: 118954. [34] YANG T, MA Z F, YANG Q Y. Formation and performance of kaolin/MnO2 bi-layer composite dynamic membrane for oily wastewater treatment: effect of solution conditions[J]. Desalination, 2011, 270(1/2/3): 50-56. [35] DONG Y C, FENG X Y, DONG D H, et al. Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports[J]. Journal of Membrane Science, 2007, 304(1/2): 65-75. [36] ZOU D, QIU M H, CHEN X F, et al. One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment[J]. Separation and Purification Technology, 2019, 210: 511-520. [37] YANG Y L, FU W Y, CHEN L, et al. One-step dip-coating method for preparation of ceramic nanofiber membrane with high permeability and low cost[J]. Journal of the European Ceramic Society, 2021, 41(16): 358-368. [38] LÜ Q K, DONG X F, ZHU Z W, et al. Environment-oriented low-cost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite[J]. Journal of Hazardous Materials, 2014, 273: 136-145. [39] DONG Y C, ZHOU J E, LIN B, et al. Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials[J]. Journal of Hazardous Materials, 2009, 172(1): 180-186. [40] ISMAIL N J, OTHMAN M H D, ABU BAKAR S, et al. Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A[J]. Journal of Water Process Engineering, 2020, 37: 101504. [41] BOUAZIZI A, BREIDA M, KARIM A, et al. Development of a new TiO2 ultrafiltration membrane on flat ceramic support made from natural bentonite and micronized phosphate and applied for dye removal[J]. Ceramics International, 2017, 43(1): 1479-1487. [42] MOUIYA M, BOUAZIZI A, ABOURRICHE A, et al. Fabrication and characterization of a ceramic membrane from clay and banana peel powder: application to industrial wastewater treatment[J]. Materials Chemistry and Physics, 2019, 227: 291-301. [43] FAN B M, WEI G, HAO H, et al. Preparation of a ceramic membrane from prevalent natural clay for the purification of phosphate wastewater[J]. Desalination and Water Treatment, 2016, 57(37): 17308-17321. [44] DULNEVA T Y, IEVLEVA O S, KUCHERUK D D. Purification of alkaline solutions from dyes by microfiltration ceramic membranes made of clay minerals modified by montmorillonite[J]. Journal of Water Chemistry and Technology, 2021, 43(1): 53-59. [45] BOULKRINAT A, BOUZERARA F, HARABI A, et al. Synthesis and characterization of ultrafiltration ceramic membranes used in the separation of macromolecular proteins[J]. Journal of the European Ceramic Society, 2020, 40(15): 5967-5973. [46] BUKHARI S Z A, HA J H, LEE J, et al. Fabrication and optimization of a clay-bonded SiC flat tubular membrane support for microfiltration applications[J]. Ceramics International, 2017, 43(10): 7736-7742. [47] SARKAR S, BANDYOPADHYAY S, LARBOT A, et al. New clay-alumina porous capillary supports for filtration application[J]. Journal of Membrane Science, 2012, 392/393: 130-136. [48] WANG Y H, CHEN G, WANG Z S, et al. Improvement of microcracks resistance of porous aluminium titanate ceramic membrane support using attapulgite clay as additive[J]. Ceramics International, 2018, 44(2): 2077-2084. [49] YIN X Q, WU J Q, GAO P, et al. Effect of boehmite sol on the performance of alumina microfiltration membranes[J]. Ceramics International, 2019, 45(13): 16173-16179. [50] WANG Y H, ZHANG Y, LIU X Q, et al. Sol-coated preparation and characterization of macroporous α-Al2O3 membrane support[J]. Journal of Sol-Gel Science and Technology, 2007, 41(3): 267-275. [51] MA J, XI X A, HE C, et al. High-performance macro-porous alumina-mullite ceramic membrane supports fabricated by employing coarse alumina and colloidal silica[J]. Ceramics International, 2019, 45(14): 17946-17954. [52] ZOU D, QIU M H, CHEN X F, et al. One-step preparation of high-performance bilayer α-alumina ultrafiltration membranes via co-sintering process[J]. Journal of Membrane Science, 2017, 524: 141-150. [53] WANG S X, TIAN J Y, WANG Q, et al. Low-temperature sintered high-strength CuO doped ceramic hollow fiber membrane: preparation, characterization and catalytic activity[J]. Journal of Membrane Science, 2019, 570/571: 333-342. [54] BAYATI B, BAYAT Y, CHARCHI N, et al. Preparation of crack-free nanocomposite ceramic membrane intermediate layers on α-alumina tubular supports[J]. Separation Science and Technology, 2013, 48(13): 1930-1940. [55] ZHANG Z X, NG T C A, GU Q L, et al. Highly permeable Al2O3 microfiltration membranes with holey interior structure achieved through sacrificial C particles[J]. Journal of the American Ceramic Society, 2020, 103(5): 3361-3372. [56] ZOU D, KE X B, QIU M H, et al. Design and fabrication of whisker hybrid ceramic membranes with narrow pore size distribution and high permeability via co-sintering process[J]. Ceramics International, 2018, 44(17): 21159-21169. [57] CHO Y H, JEONG S, KIM S J, et al. Sacrificial graphene oxide interlayer for highly permeable ceramic thin film composite membranes[J]. Journal of Membrane Science, 2021, 618: 118442. [58] QIN W, PENG C, WU J Q. A sacrificial-interlayer technique for single-step coating preparation of highly permeable alumina membrane[J]. Ceramics International, 2017, 43(1): 901-904. [59] QIN W, GUAN K, LEI B L, et al. One-step coating and characterization of α-Al2O3 microfiltration membrane[J]. Journal of Membrane Science, 2015, 490: 160-168. [60] QIN W, PENG C, WU J Q. Preparation of a highly permeable alumina membrane via wet film phase inversion[J]. RSC Advances, 2015, 5(110): 90493-90498. [61] JIANG S, YAN Y, GAVALAS G R. Temporary carbon barriers in the preparation of H2-permselective silica membranes[J]. Journal of Membrane Science, 1995, 103(3): 211-218. [62] LIU Y, ZHU W, GUAN K, et al. Preparation of high permeable alumina ceramic membrane with good separation performance via UV curing technique[J]. RSC Advances, 2018, 8(24): 13567-13577. [63] YIN X Q, GUAN K, GAO P, et al. A preparation method for the highly permeable ceramic microfiltration membrane-precursor film firing method[J]. RSC Advances, 2018, 8(6): 2906-2914. [64] ZHU W Y, LIU Y, GUAN K, et al. Integrated preparation of alumina microfiltration membrane with super permeability and high selectivity[J]. Journal of the European Ceramic Society, 2019, 39(4): 1316-1323. [65] ZOU D, XU J R, CHEN X F, et al. A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment[J]. Separation and Purification Technology, 2019, 219: 127-136. |
[1] | 赵雅明, 张振, 王畔, 张明飞. 矿物掺合料对UHPC性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3170-3175. |
[2] | 韦建刚, 陈荣, 黄伟, 陈镇东, 陈宝春, 陈培标, 朱卫东. 静水压力下超高性能混凝土的抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(8): 2706-2715. |
[3] | 董烨民, 胡传林. 不同养护制度下大掺量石灰石煅烧黏土UHPC早期水化及力学性能发展[J]. 硅酸盐通报, 2022, 41(6): 1879-1887. |
[4] | 刘开志, 龙勇, 陈露一, 李晨, 吴柏翰, 水中和, 余睿, 费顺鑫. 利用煅烧硅藻土制备高稳态超高性能混凝土基体研究[J]. 硅酸盐通报, 2022, 41(6): 1888-1895. |
[5] | 张玉斌, 鲍世辉, 张聪. 混杂纤维增强超高性能透水混凝土的弯曲性能研究[J]. 硅酸盐通报, 2022, 41(6): 1955-1962. |
[6] | 李珂珂, 李龙, 何友林, 茹军辉, 余睿, 徐刘浏, 范定强, 王志宇. 超高性能混凝土流变特性及其调控研究[J]. 硅酸盐通报, 2022, 41(5): 1570-1577. |
[7] | 范小春, 葛腾, 梁天福. 混杂钢纤维超高性能混凝土梁裂缝分形理论研究[J]. 硅酸盐通报, 2022, 41(5): 1578-1588. |
[8] | 孙美娟, 姚丕强, 黄雄, 余睿, 水中和, 蒋春园, 范定强. 沸石对海水拌合超高性能混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(5): 1649-1655. |
[9] | 张腾腾, 王传林, 张宇轩, 刘泽平. 粉煤灰掺量对海水海砂高性能混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(5): 1677-1688. |
[10] | 姜常玺, 周立娟, 庄英华, 廖圣俊, 王建军. 三元复合烧结助剂Er2O3-Mg2Si-Yb2O3对氮化硅陶瓷性能的影响[J]. 硅酸盐通报, 2022, 41(4): 1423-1432. |
[11] | 徐港, 王鑫科, 盛唤, 周万清. UHPC装配式电缆沟设计及抗力性能研究[J]. 硅酸盐通报, 2022, 41(3): 844-852. |
[12] | 郑丽, 陈露一, 张志豪. 基于紧密堆积理论优化超高性能混凝土钢纤维参数[J]. 硅酸盐通报, 2022, 41(3): 853-859. |
[13] | 郭晓宁, 李兆恒, 吕亚军, 管俊峰, 郝颖, 杨龙宾. 焚烧垃圾渣生态型超高性能混凝土研究[J]. 硅酸盐通报, 2022, 41(2): 496-505. |
[14] | 杨东洋, 曹鸿猷, 黄京龙. MgO膨胀剂对超高性能混凝土收缩性能的影响[J]. 硅酸盐通报, 2022, 41(10): 3420-3427. |
[15] | 段燕妮, 苗远, 张继承, 杜国锋. 基于压电效应的纤维高性能混凝土损伤监测研究[J]. 硅酸盐通报, 2022, 41(10): 3458-3464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||