硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (10): 3511-3524.
施麟芸1,2,3, 匡敬忠3, 刘松柏1,2, 鲁亚1,2, 严峻1,2
收稿日期:
2022-05-21
修回日期:
2022-07-28
出版日期:
2022-10-15
发布日期:
2022-10-26
通讯作者:
匡敬忠,博士,教授。E-mail:kjz692@163.com
作者简介:
施麟芸(1988—),女,博士研究生,高级工程师。主要从事二次资源综合利用的研究。E-mail:shilinyun1@163.com
基金资助:
SHI Linyun1,2,3, KUANG Jingzhong3, LIU Songbai1,2, LU Ya1,2, YAN Jun1,2
Received:
2022-05-21
Revised:
2022-07-28
Online:
2022-10-15
Published:
2022-10-26
摘要: 我国铜尾矿排放及储量巨大,造成环境污染和资源浪费。铜尾矿矿物成分复杂、颗粒粒度较细等问题限制了铜尾矿的高效高附加值利用。本文综述了铜尾矿的矿物属性、物理化学性能特征及其在建材化应用过程中的技术和控制要求,从铜尾矿用于蒸压加气混凝土、水泥基材料、水泥熟料、砖、微晶玻璃、多孔材料、充填材料等多个途径,总结了铜尾矿的主要应用方式、作用特征和主要成分的影响作用规律。为铜尾矿等固废生产型企业协同建材行业系统解决尾矿资源化问题提供参考,协同建材行业的发展方向和产品要求,提出了未来尾矿资源建材化处置的关键性问题,为真正实现尾矿的产品资源化利用提供支持。
中图分类号:
施麟芸, 匡敬忠, 刘松柏, 鲁亚, 严峻. 铜尾矿建材化应用研究现状及矿物组成影响作用规律[J]. 硅酸盐通报, 2022, 41(10): 3511-3524.
SHI Linyun, KUANG Jingzhong, LIU Songbai, LU Ya, YAN Jun. Research Status of Building Material Application of Copper Tailings and Influencing Rules of Mineral Composition[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(10): 3511-3524.
[1] 中国资源综合利用年度报告[R].北京:国家发展改革委员会,2012-2021. Chinese bulk industrial solid waste comprehensive utilization industry development report[R]. Beijing: National Development and Reform Commission, 2012-2021 (in Chinese). [2] 谭 波,张冬冬,宁 平,等.铜尾矿综合利用研究进展[J].化工矿物与加工,2021,50(2):46-51. TAN B, ZHANG D D, NING P, et al. Research progress on comprehensive utilization of copper tailings[J]. Industrial Minerals & Processing, 2021, 50(2): 46-51 (in Chinese). [3] 江伟华,卿 芸,阎 浩.津巴布韦德特地区某铜矿床地球物理特征及找矿方向[J].现代矿业,2020,36(6):44-45. JIANG W H, QING Y, YAN H. Geophysical characteristics and prospecting direction of a copper deposit in Dete, Zimbabwe[J]. Modern Mining, 2020, 36(6): 44-45 (in Chinese). [4] 禹秀艳,张 翔,黄子强,等.铜矿床的地质—地球物理特征及成矿规律分析[J].中国金属通报,2021(9):46-47. YU X Y, ZHANG X, HUANG Z Q, et al. Analysis of geo-geophysical characteristics and metallogenic laws of copper deposits[J]. China Metal Bulletin, 2021(9): 46-47 (in Chinese). [5] 卫亚儒,王宇斌,王望泊.某铜尾矿中磁性铁与钙铁榴石综合利用试验研究[J].铜业工程,2020(1):21-24. WEI Y R, WANG Y B, WANG W B. Research on comprehensive utilization of iron and andradite in copper tailings[J]. Copper Engineering, 2020(1): 21-24 (in Chinese). [6] 韦性平,王昌龙,卫亚儒,等.某浮选铜尾矿有价成分综合回收工艺研究[J].中国钼业,2021,45(4):19-25. WEI X P, WANG C L, WEI Y R, et al. Comprehensive recovery technology of valuable components from a flotation copper tailings[J]. China Molybdenum Industry, 2021, 45(4): 19-25 (in Chinese). [7] 卓建英,卢 涛,吴启明,等.某选铜尾矿工艺矿物学及选矿试验研究[J].铜业工程,2019(4):63-67. ZHUO J Y, LU T, WU Q M, et al. Experimental study on process mineralogy analysis and mineral processing of a certain copper tailings[J]. Copper Engineering, 2019(4): 63-67 (in Chinese). [8] 曹喜民.城门山铜矿硫化矿浮选新技术研究[D].长沙:中南大学,2010. CAO X M. The new flotation technique research of the sulphide ore in Chengmenshan copper mine[D]. Changsha: Central South University, 2010 (in Chinese). [9] 邱廷省,邱仙辉,丁士启,等.一种复杂难处理铜硫硫化矿的选矿方法:CN113070155A[P].2021-07-06. QIU T S, QIU X H, DING S Q, et al. Beneficiation method for complex refractory copper-sulfur sulfide ore: CN113070155A[P]. 2021-07-06 (in Chinese). [10] 严华山,邱廷省,杨 斌,等.一种组合抑制剂强化微细粒铜铅混合精矿浮选分离的方法:CN113145316A[P].2021-07-23. YAN H S, QIU T S, YANG B, et al. A method for flotation separation of fine copper-lead mixed concentrates with combined inhibitors: CN113145316A[P]. 2021-07-23 (in Chinese). [11] 杨 斌,李显杰,于 虎,等.某选铜尾矿脱泥设备研究与生产实践[J].有色冶金设计与研究,2017,38(6):15-17. YANG B, LI X J, YU H, et al. Study on de-sliming equipment for copper concentrator tailings and its operation practice[J]. Nonferrous Metals Engineering & Research, 2017, 38(6): 15-17 (in Chinese). [12] 黄晓燕,倪 文,王中杰,等.铜尾矿制备无石灰加气混凝土的试验研究[J].材料科学与工艺,2012,20(1):11-15. HUANG X Y, NI W, WANG Z J, et al. Experimental study on autoclaved aerated concrete made from copper tailings without using lime as calcareous materials[J]. Materials Science and Technology, 2012, 20(1): 11-15 (in Chinese). [13] 朱街禄,宋军伟,王 露,等.铜尾矿在水泥基材料中应用的研究进展[J].硅酸盐通报,2018,37(11):3492-3497. ZHU J L, SONG J W, WANG L, et al. Research progress on application of copper tailing in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3492-3497 (in Chinese). [14] GUPTA R C, MEHRA P, THOMAS B S. Utilization of copper tailing in developing sustainable and durable concrete[J]. Journal of Materials in Civil Engineering, 2017, 29(5): 04016274. [15] KOLOVOS K, LOUTSI P, TSIVILIS S, et al. The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: part I. Anions[J]. Cement and Concrete Research, 2001, 31(3): 425-429. [16] KOLOVOS K, TSIVILIS S, KAKALI G. The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: part II. Anions[J]. Cement and Concrete Research, 2002, 32(3): 463-469. [17] SHEIKH T A, REZA M M. Production of eco-friendly bricks from copper mine tailings through geopolymerization in India[J]. International Journal of Trend in Scientific Research and Development, 2017, 5(1): 435-451. [18] AHMARI S, ZHANG L Y. Production of eco-friendly bricks from copper mine tailings through geopolymerization[J]. Construction and Building Materials, 2012, 29: 323-331. [19] 施麟芸,毛佩林,刘松柏,等.CaO-MgO-Al2O3-SiO2系铜尾矿微晶玻璃析晶特征研究[J].硅酸盐通报,2020,39(5):1645-1649. SHI L Y, MAO P L, LIU S B, et al. Crystallization characteristics of copper tailings glass-ceramics of CaO-MgO-Al2O3-SiO2 system[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1645-1649 (in Chinese). [20] 刘 倩,周春生.铜尾矿微晶玻璃的制备及其性能研究[J].商洛学院学报,2015,29(6):41-44. LIU Q, ZHOU C S. Development of microcrystalline glass from copper tailings[J]. Journal of Shangluo University, 2015, 29(6): 41-44 (in Chinese). [21] 杨 航,李伟光,申士富,等.江西某铜尾矿制备发泡陶瓷的正交试验研究[J].铜业工程,2019(2):78-86. YANG H, LI W G, SHEN S F, et al. Orthogonal experimental study on preparation of foamed ceramics from a copper tailings in Jiangxi[J]. Copper Engineering, 2019(2): 78-86 (in Chinese). [22] 张国涛,邓仕豪,杨景琪.以铜尾矿制备发泡陶瓷墙板的研究[J].山东陶瓷,2020,43(1):3-7. ZHANG G T, DENG S H, YANG J Q. Study on preparation of foamed ceramic wallboard from copper tailings[J]. Shandong Ceramics, 2020, 43(1): 3-7 (in Chinese). [23] 刘 茜.大宝山铜尾矿资源化处置与综合利用途径研究[J].广州化工,2013,41(23):112-114. LIU Q. Research on the comprehensive utilization and resource treatment of Dabaoshan copper tailings[J]. Guangzhou Chemical Industry, 2013, 41(23): 112-114 (in Chinese). [24] 刘维平,邱定蕃,苍大强.铜尾矿在装饰材料中的应用[J].中国矿业,2003,12(9):17-18. LIU W P, QIU D F, CANG D Q. Study on the copper tailings used in decorated materials[J]. China Mining Magazine, 2003, 12(9): 17-18 (in Chinese). [25] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [26] 陈贤树,何 勤,曲生华,等.高硫超细铜尾矿充填胶凝材料的研究与应用[J].新型建筑材料,2020,47(9):107-110+150. CHEN X S, HE Q, QU S H, et al. Research and application of cementitious materials for filling high sulfur and ultra-fine copper tailings[J]. New Building Materials, 2020, 47(9): 107-110+150 (in Chinese). [27] 胡亚桥,覃星朗,谢经鹏.基于新型胶凝材料的超细铜尾矿充填试验及应用[J].采矿技术,2021,21(4):163-165. HU Y Q, QIN X L, XIE J P. Filling test and application of ultrafine copper tailings based on new cementitious materials[J]. Mining Technology, 2021, 21(4): 163-165 (in Chinese). [28] 方海星.铜尾矿轻质陶粒及陶粒泡沫混凝土研究[D].南昌:南昌大学,2021. FANG H X. Study on copper tailings lightweight ceramsite and the ceramsite foam concrete[D]. Nanchang: Nanchang University, 2021 (in Chinese). [29] 申盛伟.高掺量铜尾矿加气混凝土制备及性能研究[D].武汉:湖北大学,2016. SHEN S W. Research on preparation and property of aerated concrete with high content of copper tailings[D]. Wuhan: Hubei University, 2016 (in Chinese). [30] 曾兴华,黄高明,吴炎平,等.铜尾矿硅质原料在蒸压加气混凝土砌块中应用技术研究[J].新型建筑材料,2021,48(5):146-148. ZENG X H, HUANG G M, WU Y P, et al. Research on application technology of copper tailings siliceous material in autoclaved aerated concrete block[J]. New Building Materials, 2021, 48(5): 146-148 (in Chinese). [31] 陈 伟,倪 文,李德忠,等.金尾矿蒸压加气混凝土水化机理和微观结构分析[J].材料科学与工艺,2015,23(1):32-37. CHEN W, NI W, LI D Z, et al. The hydration mechanism and microstructural investigations on autoclaved aerated concrete with gold tailings[J]. Materials Science and Technology, 2015, 23(1): 32-37 (in Chinese). [32] HASEGAWA M, OGATA T, SATO M. Mechano-radicals produced from ground quartz and quartz glass[J]. Powder Technology, 1995, 85(3): 269-274. [33] 邹 磊.激发剂对铜尾矿粉复合胶凝材料强度的影响[J].江西建材,2021(7):37-39. ZOU L. Influence of activator on the strength of copper tailings powdercomposite cementitious materials[J]. Jiangxi Building Materials, 2021(7): 37-39 (in Chinese). [34] ONUAGULUCHI O, EREN Ö. Rheology, strength and durability properties of mortars containing copper tailings as a cement replacement material[J]. European Journal of Environmental and Civil Engineering, 2013, 17(1): 19-31. [35] ONUAGULUCHI O, EREN Ö. Copper tailings as a potential additive in concrete: consistency, strength and toxic metal immobilization properties[J]. Indian Journal of Engineering and Materials Sciences, 2012, 19(2): 79-86. [36] 李巧玲.铜尾矿粉在水泥基材料中的作用机理[D].武汉:武汉大学,2018. LI Q L. Mechanism effects of copper tailings in cement-based materials[D]. Wuhan: Wuhan University, 2018 (in Chinese). [37] 宋军伟,朱街禄,刘方华,等.铜尾矿粉对复合胶凝体系强度和微结构的影响[J].建筑材料学报,2019,22(6):846-852. SONG J W, ZHU J L, LIU F H, et al. Influence of copper tailing powder on the compressive strength and microscopic structure of complex binder[J]. Journal of Building Materials, 2019, 22(6): 846-852 (in Chinese). [38] KUNDU S, AGGARWAL A, MAZUMDAR S, et al. Stabilization characteristics of copper mine tailings through its utilization as a partial substitute for cement in concrete: preliminary investigations[J]. Environmental Earth Sciences, 2016, 75(3): 1-9. [39] 叶晓冬.铜尾矿粉混凝土微观机理及力学性能研究[D].昆明:云南大学,2017. YE X D. Study on the micromechanism and mechanical properties of copper tailing powder concrete[D]. Kunming: Yunnan University, 2017 (in Chinese). [40] 张凯帆.铜尾矿胶凝材料的制备及水化机理[D].邯郸:河北工程大学,2021. ZHANG K F. Study on preparation and hydration mechanism of cementitious materials from copper tailings[D]. Handan: Hebei University of Engineering, 2021 (in Chinese). [41] 徐 伟,鲁 亚,石 齐,等.铜尾矿掺合料在预拌混凝土中应用研究[J].新型建筑材料,2021,48(8):12-15. XU W, LU Y, SHI Q, et al. Research on application of copper tailings admixture in ready-mixed concrete[J]. New Building Materials, 2021, 48(8): 12-15 (in Chinese). [42] 施麟芸,刘松柏,张立明.铜尾矿渣复合掺合料的活性影响规律及其机理分析[J].混凝土,2019(5):70-73. SHI L Y, LIU S B, ZHANG L M. Effects of compound mineral addition activation index on by copper tail slag powder and its mechanism[J]. Concrete, 2019(5): 70-73 (in Chinese). [43] 姚 耿.机械活化硅质尾矿水化反应特性研究[D].青岛:山东科技大学,2020. YAO G. Hydration properties of mechanically activated siliceous tailings[D]. Qingdao: Shandong University of Science and Technology, 2020 (in Chinese). [44] 鲁 亚,刘松柏,施麟芸.铜尾矿粉的制备及应用于UHPC中的配合比设计研究[J].新型建筑材料,2020,47(6):33-37. LU Y, LIU S B, SHI L Y. Preparation of copper tailings powder and its mix ratio design in application of UHPC[J]. New Building Materials, 2020, 47(6): 33-37 (in Chinese). [45] ONUAGULUCHI O, EREN Ö. Recycling of copper tailings as an additive in cement mortars[J]. Construction and Building Materials, 2012, 37: 723-727. [46] 饶春如,肖国先,郜志海,等.铜尾矿替代粘土煅烧硅酸盐水泥熟料的研究[J].苏州科技学院学报(工程技术版),2009,22(4):37-40. RAO C R, XIAO G X, GAO Z H, et al. Research on the tailings from copper ore to replace the clay calcining Portland clinker cement[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2009, 22(4): 37-40 (in Chinese). [47] 林细光.铜铅锌尾矿应用于水泥原料的试验研究[D].杭州:浙江大学,2006. LIN X G. Experimental research of using copper/lead/zinc mineral tailings as substitutes for cement feedstocks[D]. Hangzhou: Zhejiang University, 2006 (in Chinese). [48] 郑秀华,赵 晶,王金忠.铜尾矿对水泥生料易烧性及水泥强度的影响[J].房材与应用,1999,27(2):8-9+15. ZHENG X H, ZHAO J, WANG J Z. Influences of copper tailings on burnability of cement raw meal and on cement strength[J]. Housing Materials & Applications, 1999, 27(2): 8-9+15 (in Chinese). [49] 奚新国,张长森,周婷婷,等.铜尾渣对水泥生料易烧性及熟料性能的影响[J].建筑材料学报,2014,17(6):1102-1107+1114. XI X G, ZHANG C S, ZHOU T T, et al. Effect of copper tailings on burn-ability of cement raw meal and performances of clinker[J]. Journal of Building Materials, 2014, 17(6): 1102-1107+1114 (in Chinese). [50] QIU G H, LUO Z Y, SHI Z L, et al. Utilization of coal gangue and copper tailings as clay for cement clinker calcinations[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2011, 26(6): 1205-1210. [51] 严 峻,聂 松,刘松柏,等.利用铜尾矿作硅质原料制备硅酸盐水泥熟料的研究[J].硅酸盐通报,2021,40(4):1273-1279. YAN J, NIE S, LIU S B, et al. Preparation of Portland cement clinkers by utilizing copper tailings as siliceous material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1273-1279 (in Chinese). [52] JIAN S W, GAO W B, LV Y, et al. Potential utilization of copper tailings in the preparation of low heat cement clinker[J]. Construction and Building Materials, 2020, 252: 119130. [53] ŠILER P, KOLÁŘOVÁ I, MÁSILKO J, et al. The effect of zinc on the Portland cement hydration[J]. Key Engineering Materials, 2018, 761: 131-134. [54] STEPHAN D, MALLMANN R, KNÖFEL D, et al. High intakes of Cr, Ni, and Zn in clinker: part I. Influence on burning process and formation of phases[J]. Cement and Concrete Research, 1999, 29(12): 1949-1957. [55] SHANG D C, WANG M G, XIA Z S, et al. Incorporation mechanism of titanium in Portland cement clinker and its effects on hydration properties[J]. Construction and Building Materials, 2017, 146: 344-349. [56] KINDNESS A, LACHOWSKI E E, MINOCHA A K, et al. Immobilisation and fixation of molybdenum (VI) by Portland cement[J]. Waste Management, 1994, 14(2): 97-102. [57] MANDALIEV P, DÄHN R, TITS J, et al. EXAFS study of Nd(III) uptake by amorphous calcium silicate hydrates (C-S-H)[J]. Journal of Colloid and Interface Science, 2010, 342(1): 1-7. [58] CORUH S, ERGUN O N, CHENG T W. Treatment of copper industry waste and production of sintered glass-ceramic[J]. Waste Management & Research, 2006, 24(3): 234-241. [59] 廖 力.利用铜矿尾矿制备微晶玻璃试验研究[J].矿产综合利用,2017(6):82-85. LIAO L. Experimental study on preparation of glass-ceramics using copper tailings[J]. Multipurpose Utilization of Mineral Resources, 2017(6): 82-85 (in Chinese). [60] 侯端旭.德兴铜矿浮选尾矿制备微晶玻璃的试验研究[D].沈阳:东北大学,2016. HOU D X. Experimental research on preparation of glass-ceramics from flotation tailings of Dexing Copper Mine[D]. Shenyang: Northeastern University, 2016 (in Chinese). [61] BARBIERI L, KARAMANOV A, CORRADI A, et al. Structure, chemical durability and crystallization behavior of incinerator-based glassy systems[J]. Journal of Non-Crystalline Solids, 2008, 354(2/3/4/5/6/7/8/9): 521-528. [62] 徐 博,曹建尉,梁开明.Fe2O3对CaO-Al2O3-SiO2系泡沫微晶玻璃析晶与发泡的影响[J].稀有金属材料与工程,2011,40(s1):15-17. XU B, CAO J W, LIANG K M. Influence of Fe2O3 on the crystallization and foaming of CaO-Al2O3-SiO2 glass-ceramics[J]. Rare Metal Materials and Engineering, 2011, 40(s1): 15-17 (in Chinese). [63] 施麟芸,刘松柏,毛佩林,等.一种利用铜尾矿制备泡沫微晶保温装饰一体板的方法:CN112441747A[P].2021-03-05. SHI L Y, LIU S B, MAO P L, et al. A method for preparing foam microcrystalline thermal insulation and decoration integrated board using copper tailings: CN112441747A[P]. 2021-03-05 (in Chinese). [64] NIU Y H, FAN X Y, REN D, et al. Effect of Na2CO3 content on thermal properties of foam-glass ceramics prepared from smelting slag[J]. Materials Chemistry and Physics, 2020, 256: 123610. [65] 王 宝,张虎元,董兴玲,等.硫化物氧化对充填体长期强度的影响[J].化工矿物与加工,2007,36(10):29-31. WANG B, ZHANG H Y, DONG X L, et al. Long-term deterioration of cemented paste backfill due to sulphide oxidation[J]. Industrial Minerals & Processing, 2007, 36(10): 29-31 (in Chinese). [66] TIAN X, ZHANG H B, ZHANG T, et al. Alkali-activated copper tailings-based pastes: compressive strength and microstructural characterization[J]. Journal of Materials Research and Technology, 2020, 9(3): 6557-6567. [67] 王子思,傅 茜.新型水泥熟料原料新技术与新理论[M].北京:中国科学技术出版社,1999:16-20. WANG Z S, FU Q. New technology and new theory of new cement clinker raw materials[M]. Beijing: China Science and Technology Press, 1999: 16-20 (in Chinese). [68] 匡敬忠,钟盛文,王小强.铜尾矿和钽铌尾矿为主要原料的微晶玻璃的研究[J].陶瓷,2002(2):32-34. KUANG J Z, ZHONG S W, WANG X Q. Study on copper tailing and tantalum niobium tailings as raw materials of glass-ceramics[J]. Ceramics, 2002(2): 32-34 (in Chinese). [69] AYORA C, CHINCHÓN S, AGUADO A, et al. Weathering of iron sulfides and concrete alteration: thermodynamic model and observation in dams from central Pyrenees, Spain[J]. Cement and Concrete Research, 1998, 28(4): 591-603. [70] SHI C J, QU B, PROVIS J L. Recent progress in low-carbon binders[J]. Cement and Concrete Research, 2019, 122: 227-250. [71] NATH P, SARKER P K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition[J]. Construction and Building Materials, 2014, 66: 163-171. |
[1] | 吴泳霖, 张伟, 奠波, 陈建军. 磷石膏热分解研究现状[J]. 硅酸盐通报, 2022, 41(9): 3129-3137. |
[2] | 从金瑶, 杨恒, 涂博, 祁庆龙, 王海龙. 磷石膏-铜尾矿砂混合料的土工性能及微观机理研究[J]. 硅酸盐通报, 2022, 41(2): 685-692. |
[3] | 方露, 黄萧. 基于铅锌冶炼渣碱激发材料固化铬渣的研究[J]. 硅酸盐通报, 2021, 40(8): 2631-2639. |
[4] | 姚苏琴, 查文华, 刘新权, 季圣星, 何昌春, 余跃. 萍乡废弃煤矸石理化特性及热活化性能研究[J]. 硅酸盐通报, 2021, 40(7): 2280-2287. |
[5] | 严峻, 聂松, 刘松柏, 邱廷省. 利用铜尾矿作硅质原料制备硅酸盐水泥熟料的研究[J]. 硅酸盐通报, 2021, 40(4): 1273-1279. |
[6] | 申艳军, 白志鹏, 郝建帅, 廖太昌, 李曙光, 许汉华. 尾矿制备混凝土研究进展与利用现状分析[J]. 硅酸盐通报, 2021, 40(3): 845-857. |
[7] | 陈志友, 苏小琼, 杨志文, 肖洪旭. 锂云母锂渣性质及利用研究现状[J]. 硅酸盐通报, 2021, 40(3): 877-882. |
[8] | 高鹏, 徐悦清, 曹云, 韩燕, 刘荣. 淤泥基免烧陶粒的制备及性能影响因素[J]. 硅酸盐通报, 2021, 40(3): 889-899. |
[9] | 陶航宇, 陈萍, 龚亦凡, 詹静芳, 章莉. 基于砖含量的再生砖混粗骨料分类研究[J]. 硅酸盐通报, 2021, 40(3): 957-963. |
[10] | 申艳军, 郝建帅, 白志鹏, 周子涵, 李玉根, 廖太昌, 张凯峰. 沙漠砂制备混凝土研究进展[J]. 硅酸盐通报, 2021, 40(12): 3879-3890. |
[11] | 杨晓伟, 张爱生, 曲俊蓉, 杨柯, 许建华, 朱英. 油田污泥基高强陶粒的制备及性能优化[J]. 硅酸盐通报, 2021, 40(1): 215-222. |
[12] | 袁政成;黄法礼;王振;温家馨;易忠来;李化建;谢永江;袁静怡;李洪福. 隧道洞渣在建筑材料中的资源化综合利用研究进展[J]. 硅酸盐通报, 2020, 39(8): 2468-2475. |
[13] | 马明亮;孙晓南;权宗刚;王科颖. 我国工业固废制备陶粒资源化利用的研究进展[J]. 硅酸盐通报, 2020, 39(8): 2492-2500. |
[14] | 郝彤;王帅;冷发光. 利用地铁盾构渣土制备高流态充填材料[J]. 硅酸盐通报, 2020, 39(5): 1525-1532. |
[15] | 肖莉娜. 机械-化学耦合活化对铜尾矿火山灰活性的影响[J]. 硅酸盐通报, 2020, 39(11): 3595-3600. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||