[1] KRASSOWSKA J, KOSIOR-KAZBERUK M. Shear behavior of steel or basalt fiber reinforced concrete beams without stirrup reinforcement[J]. Technical Sciences, 2017, 4(20): 391-404. [2] GIRGIN Z C, YILDIRIM M T. Usability of basalt fibres in fibre reinforced cement composites[J]. Materials and Structures, 2016, 49(8): 3309-3319. [3] ALY T, SANJAYAN J G, COLLINS F. Effect of polypropylene fibers on shrinkage and cracking of concretes[J]. Materials and Structures, 2008, 41(10): 1741-1753. [4] SMARZEWSKI P. Influence of basalt-polypropylene fibres on fracture properties of high performance concrete[J]. Composite Structures, 2019, 209: 23-33. [5] WANG D H, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197: 464-473. [6] 闫 傲.聚合物/PZT陶瓷基压电复合材料与器件的制备与3D打印研究[D].南宁:广西大学,2021. YAN A. 3D printing research and preparation of polymer/PZT ceramic matrix piezoelectric composites and devices[D]. Nanning: Guangxi University, 2021 (in Chinese). [7] LEE G J, HWANG W J, PARK J J, et al. Study of sensitive parameters on the sensor performance of a compression-type piezoelectric accelerometer based on the meta-model[J]. Energies, 2019, 12(7): 1381. [8] WU A P, HE S H, REN Y L, et al. Design of a new stress wave-based pulse position modulation (PPM) communication system with piezoceramic transducers[J]. Sensors (Basel, Switzerland), 2019, 19(3): 558. [9] KANG S H, HAN D H, KANG L H. Defect visualization of a steel structure using a piezoelectric line sensor based on laser ultrasonic guided wave[J]. Materials (Basel, Switzerland), 2019, 12(23): 3992. [10] FENG Q, LIANG Y B, SONG G B. Real-time monitoring of early-age concrete strength using piezoceramic-based smart aggregates[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018115. [11] JIANG T Y, KONG Q Z, PENG Z, et al. Monitoring of corrosion-induced degradation in prestressed concrete structure using embedded piezoceramic-based transducers[J]. IEEE Sensors Journal, 2017, 17(18): 5823-5830. [12] 刘孝禹,蔡高洁,张继承.GFRP管约束碳纤维混凝土组合柱损伤监测[J].压电与声光,2021,43(3):395-398. LIU X Y, CAI G J, ZHANG J C. Damage monitoring of GFRP tube confined carbon fiber reinforced concrete composite column[J]. Piezoelectrics & Acoustooptics, 2021, 43(3): 395-398 (in Chinese). [13] 刘孝禹,饶玉龙,张继承,等.基于压电传感器的木材轴压损伤监测[J].压电与声光,2020,42(5):681-685. LIU X Y, RAO Y L, ZHANG J C, et al. Timber axial pressure damage monitoring based on piezoceramic sensor[J]. Piezoelectrics & Acoustooptics, 2020, 42(5): 681-685 (in Chinese). [14] HOKLY S,张继承,刘翔龙,等.压电波动法监测土壤含水率的可行性研究[J].压电与声光,2021,43(3):391-394. HOKLY S, ZHANG J C, LIU X L, et al. Feasibility study on detection of moisture content of soil based on piezoelectric wave method[J]. Piezoelectrics & Acoustooptics, 2021, 43(3): 391-394 (in Chinese). [15] 胡鹏兵,陈 娟,孙 航,等.基于压电陶瓷的地聚合物砂浆强度发展监测研究[J].硅酸盐通报,2021,40(9):2905-2910. HU P B, CHEN J, SUN H, et al. Strength development monitoring of geopolymer mortar based on piezoelectric ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2905-2910 (in Chinese). |