[1] 白丽飞,李艳佳,张佳强.经济发展与交通基础设施建设二者间的关系研究:以“一带一路”沿线我国西北五省为例[J].综合运输,2019,41(12):34-39. BAI L F, LI Y J, ZHANG J Q. Study on the relation ship between economic development and transportation infrastructure construction taking five provinces in northwest China along the Belt and Road as an example[J]. China Transportation Review, 2019, 41(12): 34-39 (in Chinese). [2] 陈 诚,王显富,袁宇城.中国建筑在“一带一路”基础建设中的可持续发展理念[J].可持续发展经济导刊,2019(8):27-30. CHEN C, WANG X F, YUAN Y C. CSCEĆs sustainable development concept in the “Belt and Road”[J]. China Sustainability Tribune, 2019(8): 27-30 (in Chinese). [3] 徐瑞御,肖庆峰.火灾高温下轻骨料混凝土强度和结构损伤规律研究[J].消防科学与技术,2019,38(6):760-763. XU R Y, XIAO Q F. Study on strength and structure damage rules of lightweight aggregate concrete under fire temperatures[J]. Fire Science and Technology, 2019, 38(6): 760-763 (in Chinese). [4] 王广勇,谢福娣,张东明,等.火灾后型钢混凝土柱抗震性能试验及参数分析[J].土木工程学报,2015,48(7):60-70. WANG G Y, XIE F D, ZHANG D M, et al. Test and parametric analysis on post-fire seismic performance of steel reinforced concrete columns[J]. China Civil Engineering Journal, 2015, 48(7): 60-70 (in Chinese). [5] 马志鸣,赵铁军,刘志强.再养护对高温损伤后混凝土抗渗性影响研究[J].工程建设,2014,46(3):7-10+20. MA Z M, ZHAO T J, LIU Z Q. Study on the anti-performance of concrete by re-curing after high-temperature damage[J]. Engineering Construction, 2014, 46(3): 7-10+20 (in Chinese). [6] 韦宇硕,胡 昱,李庆斌.不同养护条件对火灾后混凝土抗压性能的影响[J].混凝土,2010(11):10-12+15. WEI Y S, HU Y, LI Q B. Effect of curing condition on compressive properties of concrete subjected to fire[J]. Concrete, 2010(11): 10-12+15 (in Chinese). [7] 翟 越,艾晓芹,邓子辰,等.受火温度和冷却方式对混凝土抗压强度影响[J].湖南大学学报(自然科学版),2014,41(11):74-80. ZHAI Y, AI X Q, DENG Z C, et al. Influences of cooling mode and high temperature on concrete compressive strength[J]. Journal of Hunan University (Natural Sciences), 2014, 41(11): 74-80 (in Chinese). [8] 万胜武,许 鹏,徐 杰,等.火灾高温后混凝土残余强度的试验研究[J].科学技术与工程,2018,18(6):316-320. WAN S W, XU P, XU J, et al. Experimental study on residual strength of concrete after high temperature[J]. Science Technology and Engineering, 2018, 18(6): 316-320 (in Chinese). [9] 郑钰涛,李玉成,彭晨鑫.高温后不同冷却方式对混凝土力学特性的影响[J].水资源与水工程学报,2019,30(4):189-194. ZHENG Y T, LI Y C, PENG C X. Effect of different cooling methods on mechanical properties of concrete after high temperature[J]. Journal of Water Resources and Water Engineering, 2019, 30(4): 189-194 (in Chinese). [10] MENG F D, ZHAI Y, LI Y B, et al. Research on the effect of pore characteristics on the compressive properties of sandstone after freezing and thawing[J]. Engineering Geology, 2021, 286: 106088. [11] WANG Y Z, YANG W C, GE Y, et al. Analysis of freeze-thaw damage and pore structure deterioration of mortar by low-field NMR[J]. Construction and Building Materials, 2022, 319: 126097. [12] ZHAO H T, DING J, HUANG Y Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials[J]. Structural Concrete, 2019, 20(5): 1750-1762. [13] ZHAO H T, WU X, HUANG Y Y, et al. Investigation of moisture transport in cement-based materials using low-field nuclear magnetic resonance imaging[J]. Magazine of Concrete Research, 2021, 73(5): 252-270. [14] 林乙玄.不同高温作用下混凝土的损伤破坏研究[J].散装水泥,2022(1):184-187. LIN Y X. Damage and destruction of concrete under different high temperatures[J]. Bulk Cement, 2022(1): 184-187 (in Chinese). [15] 张海龙,王社良,袁晓洒.基于核磁共振和超声波探伤技术的混凝土耐久性分析[J].材料科学与工程学报,2022,40(1):40-45+96. ZHANG H L, WANG S L, YUAN X S. Durability analysis of concrete based on nuclear magnetic resonance and ultrasonic flaw detection technology[J]. Journal of Materials Science and Engineering, 2022, 40(1): 40-45+96 (in Chinese). [16] 李天降,李子丰,赵彦超,等.核磁共振与压汞法的孔隙结构一致性研究[J].天然气工业,2006,26(10):57-59+174. LI T J, LI Z F, ZHAO Y C, et al. Consistency of pore structures between nmr and mercury intrusion method[J]. Natural Gas Industry, 2006, 26(10): 57-59+174 (in Chinese). [17] TOUMELIN E, TORRES-VERDÍN C, SUN B Q, et al. Random-walk technique for simulating NMR measurements and 2D NMR maps of porous media with relaxing and permeable boundaries[J]. Journal of Magnetic Resonance, 2007, 188(1): 83-96. [18] 李杰林,朱龙胤,周科平,等.冻融作用下砂岩孔隙结构损伤特征研究[J].岩土力学,2019,40(9):3524-3532. LI J L, ZHU L Y, ZHOU K P, et al. Damage characteristics of sandstone pore structure under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532 (in Chinese). [19] QIN L, ZHAI C, LIU S M, et al. Fractal dimensions of low rank coal subjected to liquid nitrogen freeze-thaw based on nuclear magnetic resonance applied for coalbed methane recovery[J]. Powder Technology, 2018, 325: 11-20. [20] ZHAI C, QIN L, LIU S M, et al. Pore structure in coal: pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction[J]. Energy & Fuels, 2016, 30(7): 6009-6020. [21] 孙中光,姜德义,谢凯楠,等.基于低场磁共振的北山花岗岩热损伤研究[J].煤炭学报,2020,45(3):1081-1088. SUN Z G, JIANG D Y, XIE K N, et al. Thermal damage study of Beishan granite based on low field magnetic resonance[J]. Journal of China Coal Society, 2020, 45(3): 1081-1088 (in Chinese). [22] 尤明庆,苏承东,李小双.损伤岩石试样的力学特性与纵波速度关系研究[J].岩石力学与工程学报,2008,27(3):458-467. YOU M Q, SU C D, LI X S. Study on relation between mechanical properties and longitudinal wave velocities for damaged rock samples[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 458-467 (in Chinese). [23] 朱劲松,宋玉普.混凝土双轴抗压疲劳损伤特性的超声波速法研究[J].岩石力学与工程学报,2004,23(13):2230-2234. ZHU J S, SONG Y P. Research on fatigue damage of concrete under biaxial compressive loading using ultrasonic velocity method[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(13): 2230-2234 (in Chinese). [24] 郑学林,张广清,郑士杰.液氮超低温诱导岩石类材料裂缝形成机制研究[J].岩石力学与工程学报,2022,41(5):889-903. ZHENG X L, ZHANG G Q, ZHENG S J. Study on formation mechanisms of fractures in rock-like materials induced by liquid nitrogen ultra-low temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 889-903 (in Chinese). [25] 郤保平,吴阳春,赵阳升,等.不同冷却模式下花岗岩强度对比与热破坏能力表征试验研究[J].岩石力学与工程学报,2020,39(2):286-300. XI B P, WU Y C, ZHAO Y S, et al. Experimental investigations of compressive strength and thermal damage capacity characterization of granite under different cooling modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 286-300 (in Chinese). [26] 张洪伟,万志军,周长冰,等.干热岩高温力学特性及热冲击效应分析[J].采矿与安全工程学报,2021,38(1):138-145. ZHANG H W, WAN Z J, ZHOU C B, et al. High temperature mechanical properties and thermal shock effect of hot dry rock[J]. Journal of Mining & Safety Engineering, 2021, 38(1): 138-145 (in Chinese). [27] 戎虎仁,顾静宇,曹海云,等.高温后混凝土强度与孔隙结构变化规律试验研究[J].硅酸盐通报,2019,38(5):1573-1578. RONG H R, GU J Y, CAO H Y, et al. Experimental research on transformation law of mechanical properties and pore structure of concrete after high temperature[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1573-1578 (in Chinese). |