硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (10): 3347-3358.
• 水泥混凝土 • 下一篇
郭宜杭, 李黎, 杨晨欣, 石玉琼
收稿日期:
2022-06-02
修回日期:
2022-07-18
出版日期:
2022-10-15
发布日期:
2022-10-26
通讯作者:
李黎,博士,副教授。E-mail:drlili@vip.163.com
作者简介:
郭宜杭(2001—),男。主要从事纤维混凝土的研究。E-mail:guoyihang010506@163.com
基金资助:
GUO Yihang, LI Li, YANG Chenxin, SHI Yuqiong
Received:
2022-06-02
Revised:
2022-07-18
Online:
2022-10-15
Published:
2022-10-26
摘要: 随着我国“双碳”战略的持续推进,绿色低碳环保的天然纤维在水泥基材料中的应用已成为建筑行业的研究热点,得到了广泛关注。但植物纤维的力学性能差,同时存在老化和粘结力减弱等问题,很难直接应用于混凝土基体。本文综述了植物纤维的微观结构和性能,植物纤维对混凝土力学性能、耐久性和热物理性能等宏观性能的影响,植物纤维增强混凝土凝结时间、界面粘结和内养护的微观演变机制。讨论了植物纤维增强混凝土中基体改性和纤维改性的方法,深入了解不同方法的作用机理,寻求更加有效地改善性能的途径。剑麻纤维和竹纤维对混凝土性能有良好的提升作用,应用最为广泛。最后展望了植物纤维的可持续发展方向,为今后进一步研究植物纤维增强混凝土提出参考建议。
中图分类号:
郭宜杭, 李黎, 杨晨欣, 石玉琼. 植物纤维增强混凝土研究进展[J]. 硅酸盐通报, 2022, 41(10): 3347-3358.
GUO Yihang, LI Li, YANG Chenxin, SHI Yuqiong. Research Progress of Plant Fiber Reinforced Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(10): 3347-3358.
[1] 袁闪闪,陈潇君,杜艳春,等.中国建筑领域CO2排放达峰路径研究[J].环境科学研究,2022,35(2):394-404. YUAN S S, CHEN X J, DU Y C, et al. Pathway of carbon emission peak of China's building sector[J]. Research of Environmental Sciences, 2022, 35(2): 394-404 (in Chinese). [2] 姚春妮,梁俊强.我国建筑领域碳达峰实践探索与行动[J].建设科技,2021(11):8-13. YAO C N, LIANG J Q. Practice exploration and action of carbon peak in China's construction sector[J]. Construction Science and Technology, 2021(11): 8-13 (in Chinese). [3] 林波荣.建筑行业碳中和挑战与实现路径探讨[J].可持续发展经济导刊,2021(s1):23-25. LIN B R. Challenges and implementation paths of carbon neutrality in construction industry[J]. China Sustainability Tribune, 2021(s1): 23-25 (in Chinese). [4] 赵 丽,李书进,宋 杨,等.植物纤维增强水泥基复合材料研究进展[J/OL].建筑材料学报,2022:1-10(2022-03-08)[2022-04-07].https://kns.cnki.net/kcms/detail/31.1764.TU.20220306.1745.002.html. ZHAO L, LI S J, SONG Y, et al. The state-of-art of natural fiber reinforced cement composites[J/OL]. Journal of Building Materials, 2022: 1-10 (2022-03-08) [2022-04-07]. https://kns.cnki.net/kcms/detail/31.1764.TU.20220306.1745.002.html (in Chinese). [5] SOSDEAN C, MARSAVINA L, DE SCHUTTER G. Damage of reinforced concrete structures due to steel corrosion[J]. Advanced Materials Research, 2015, 1111: 187-192. [6] 余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京:东南大学,2004. YU H F. Study on high performance concrete in salt lake: durability, mechanism and service life prediction[D]. Nanjing: Southeast University, 2004 (in Chinese). [7] 白诗淇.植物纤维混凝土性能研究[J].中国新技术新产品,2020(24):73-75. BAI S Q. Study on properties of plant fiber concrete[J]. New Technology & New Products of China, 2020(24): 73-75 (in Chinese). [8] 冯新新,左 涛,孙 宁,等.秸秆成型燃料集中供暖工程温室气体减排效应[J].中国生态农业学报(中英文),2022,30(4):702-712. FENG X X, ZUO T, SUN N, et al. Greenhouse gas emission reduction effect of a straw briquette central heating system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 702-712 (in Chinese). [9] 姚 进.植物纤维及其衍生物增强聚乳酸全降解复合材料研究[D].株洲:湖南工业大学,2018. YAO J. Research on the poly (lactic acid) biodegradable composites reinforced with plant fibers and their derivatives[D]. Zhuzhou: Hunan University of Technology, 2018 (in Chinese). [10] 陈宣东,刘光焰,王晓峰,等.剑麻纤维增强水泥基复合材料研究进展[J].硅酸盐通报,2018,37(11):3481-3486+3491. CHEN X D, LIU G Y, WANG X F, et al. Research progress on sisal fiber reinforced cement-based composite materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3481-3486+3491 (in Chinese). [11] 许秀颖,边加保,李慧源.植物纤维增强水泥基复合材料的研究进展与应用[J].四川水泥,2019(10):14. XU X Y, BIAN J B, LI H Y. Research progress and application of plant fiber reinforced cement matrix composites[J]. Sichuan Cement, 2019(10): 14 (in Chinese). [12] 郑泉兴,李巧灵,张 柯,等.植物纤维的热裂解过程[J].应用化学,2022,39(7):1073-1082. ZHENG Q X, LI Q L, ZHANG K, et al. Pyrolysis process of plant fibers[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1073-1082 (in Chinese). [13] WEN C C, ZHANG P, WANG J, et al. Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: a review[J]. Journal of Building Engineering, 2022, 52: 104370. [14] LI X, TABIL L G, PANIGRAHI S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review[J]. Journal of Polymers and the Environment, 2007, 15(1): 25-33. [15] BIAGIOTTI J, PUGLIA D, KENNY J M. A review on natural fibre-based composites-part I[J]. Journal of Natural Fibers, 2004, 1(2): 37-68. [16] MUNAWAR S S, UMEMURA K, KAWAI S C. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles[J]. Journal of Wood Science, 2007, 53(2): 108-113. [17] RAMESH M, PALANIKUMAR K, REDDY K H. Plant fibre based bio-composites: sustainable and renewable green materials[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 558-584. [18] YAN L B, KASAL B, HUANG L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering[J]. Composites Part B: Engineering, 2016, 92: 94-132. [19] 高 旭,席 蓓,马 婧,等.天然植物纤维复合材料的研究进展[J].西北民族大学学报(自然科学版),2021,42(4):60-65. GAO X, XI B, MA J, et al. Research progress of natural plant fiber composite materials[J]. Journal of Northwest Minzu University (Natural Science), 2021, 42(4): 60-65 (in Chinese). [20] 刘雅奇,刘运浩,李普旺,等.几种热带植物纤维在复合材料领域的研究进展[J].化工新型材料,2022,50(3):39-44. LIU Y Q, LIU Y H, LI P W, et al. Research progress on several tropical plant fibers composites[J]. New Chemical Materials, 2022, 50(3): 39-44 (in Chinese). [21] DE ANDRADE SILVA F, MOBASHER B, FILHO R D T. Cracking mechanisms in durable sisal fiber reinforced cement composites[J]. Cement and Concrete Composites, 2009, 31(10): 721-730. [22] 马东方,马伯翰,张幸锵.冲击荷载下植物纤维增强高聚物复合材料的力学性能[J].高压物理学报,2019,33(2):117-124. MA D F, MA B H, ZHANG X Q. Mechanical properties of natural fiber reinforced polymer composites under impact loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 117-124 (in Chinese). [23] 徐 青,吴能森,苏忠高,等.植物纤维增强水泥基复合材料研究综述[J].福建建材,2018(3):20-24. XU Q, WU N S, SU Z G, et al. Review on plant fiber reinforced cement matrix composites[J]. Fujian Building Materials, 2018(3): 20-24 (in Chinese). [24] 姜平伟,方江华,庞建勇,等.植物纤维喷射混凝土力学及微观性能分析[J].长江科学院院报,2020,37(8):137-141+149. JIANG P W, FANG J H, PANG J Y, et al. Mechanical properties and micro-properties of plant fiber shotcrete[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(8): 137-141+149 (in Chinese). [25] RAMAKRISHNA G, SUNDARARAJAN T. Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study[J]. Cement and Concrete Composites, 2005, 27(5): 547-553. [26] 谢晓丽.植物纤维改性水泥基复合材料的制备与力学性能研究[D].成都:西南交通大学,2016. XIE X L. Preparation of cement based composites reinforced with plant fiber and their mechanical properties[D]. Chengdu: Southwest Jiaotong University, 2016 (in Chinese). [27] RANJBAR N, ZHANG M Z. Fiber-reinforced geopolymer composites: a review[J]. Cement and Concrete Composites, 2020, 107: 103498. [28] 苏林强.植物纤维制备水泥基复合材料的研究现状[J].四川水泥,2022(3):4-6. SU L Q. Research status of cement-based composites prepared by plant fiber [J]. Sichuan Cement, 2022(3): 4-6 (in Chinese). [29] ABBAS A N, AZIZ F N A A, ABDAN K, et al. Kenaf fibre reinforced cementitious composites[J]. Fibers, 2022, 10(1): 3. [30] 何玉梅,许陆文.植物纤维/水泥复合材料力学性能研究[J].玻璃钢/复合材料,2000(4):16-17. HE Y M, XU L W. Strdy of mechanic properties for plant fibre/cement composites[J]. Fiber Reinforced Plastics/Composite, 2000(4): 16-17 (in Chinese). [31] KORNIEJENKO K, FRACZEK E, PYTLAK E, et al. Mechanical properties of geopolymer composites reinforced with natural fibers[J]. Procedia Engineering, 2016, 151: 388-393. [32] CHEN R, AHMARI S, ZHANG L Y. Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer[J]. Journal of Materials Science, 2014, 49(6): 2548-2558. [33] AMALIA N, HIDAYATULLAH S, NURFADILLA, et al. The mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fiber leaves (PFL)[J]. IOP Conference Series: Materials Science and Engineering, 2017, 180: 012012. [34] SÁ RIBEIRO R A, SÁ RIBEIRO M G, SANKAR K, et al. Geopolymer-bamboo composite: a novel sustainable construction material[J]. Construction and Building Materials, 2016, 123: 501-507. [35] 苏 强,王 桦,姜平伟,等.棉花秸秆纤维混凝土力学性能试验研究[J].建井技术,2020,41(3):31-35. SU Q, WANG H, JIANG P W, et al. Study on mechanical performance test of concrete with cotton straw fibers[J]. Mine Construction Technology, 2020, 41(3): 31-35 (in Chinese). [36] 俞亚楠,卢小雨.剑麻纤维混凝土力学性能试验研究[J].安徽工程大学学报,2022,37(1):46-51. YU Y N, LU X Y. Experimental study on mechanical properties of sisal fiber concrete[J]. Journal of Anhui Polytechnic University, 2022, 37(1): 46-51 (in Chinese). [37] TOLÊDO FILHO R D, SCRIVENER K, ENGLAND G L, et al. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites[J]. Cement and Concrete Composites, 2000, 22(2): 127-143. [38] 陈 毅,梁永哲,刘大翔,等.植物纤维加筋对植被混凝土抗冻耐久性的影响[J].湖北农业科学,2015,54(19):4840-4844. CHEN Y, LIANG Y Z, LIU D X, et al. Plant fiber reinforced effects on resistance durability of vegetation-growing concrete frost[J]. Hubei Agricultural Sciences, 2015, 54(19): 4840-4844 (in Chinese). [39] 巩亚琦.黄麻纤维高强混凝土性能试验研究[D].鞍山:辽宁科技大学,2018. GONG Y Q. Experimental study on performance of jute fiber high strength concrete[D]. Anshan: University of Science and Technology Liaoning, 2018 (in Chinese). [40] ZHAO R F, GUO H X, YI X Y, et al. Research on thermal insulation properties of plant fiber composite building material: a review[J]. International Journal of Thermophysics, 2020, 41(6): 87. [41] 倪 源,孙林柱,吴 庆,等.植物纤维增强保温砂浆性能试验研究[J].新型建筑材料,2014,41(7):82-86. NI Y, SUN L Z, WU Q, et al. Study on property test of thermal insulation mortar mixed with plant fiber[J]. New Building Materials, 2014, 41(7): 82-86 (in Chinese). [42] ZHU J, ZHENG W Z, SNEED L, et al. Mechanical properties of plant fibers reinforced alkali-activated slag cementitious material at high temperature[J]. Annales De Chimie-Science Des Matériaux, 2019, 43(4): 249-255. [43] GWON S, CHOI Y C, SHIN M. Effect of plant cellulose microfibers on hydration of cement composites[J]. Construction and Building Materials, 2021, 267: 121734. [44] SUDIN R, SWAMY N. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration[J]. Journal of Materials Science, 2006, 41(21): 6917-6924. [45] SEDAN D, PAGNOUX C, SMITH A, et al. Mechanical properties of hemp fibre reinforced cement: influence of the fibre/matrix interaction[J]. Journal of the European Ceramic Society, 2008, 28(1): 183-192. [46] 杨守禄,姬 宁,黄安香,等.木塑复合材料界面调控及其表征技术研究进展[J].化工新型材料,2018,46(11):25-30. YANG S L, JI N, HUANG A X, et al. Literature overview on interface control and characterization technique of wood-plastic composite[J]. New Chemical Materials, 2018, 46(11): 25-30 (in Chinese). [47] 潘宜健.椰壳纤维增韧水泥基材料性能研究[D].哈尔滨:哈尔滨工业大学,2020. PAN Y J. Study on properties of coir fiber toughened cementitious materials[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). [48] AGOPYAN V, SAVASTANO H, JOHN V M, et al. Developments on vegetable fibre-cement based materials in São Paulo, Brazil: an overview[J]. Cement and Concrete Composites, 2004, 27(5): 527-536. [49] BONNET-MASIMBERT P A, GAUVIN F, BROUWERS H J H, et al. Study of modifications on the chemical and mechanical compatibility between cement matrix and oil palm fibres[J]. Results in Engineering, 2020, 7: 100150. [50] 王立成,张 磊.混凝土内养护技术研究进展[J].建筑材料学报,2020,23(6):1471-1478. WANG L C, ZHANG L. Research progress on concrete internal curing technology[J]. Journal of Building Materials, 2020, 23(6): 1471-1478 (in Chinese). [51] 刘玉莹.竹纤维增强水泥砂浆性能研究[D].长沙:中南林业科技大学,2016. LIU Y Y. Performance research of mortar reinforced with bamboo fiber[D]. Changsha: Central South University of Forestry and Technology, 2016 (in Chinese). [52] 张文潇.纤维素纤维混凝土耐久性、高温抗爆裂及徐变特性[D].南京:东南大学,2015. ZHANG W X. Durability, resistance to spalling after high temperature and creep characteristics of cellulose fibre reinforced concrete[D]. Nanjing: Southeast University, 2015 (in Chinese). [53] TONOLI G H D, SANTOS S F, JOAQUIM A P, et al. Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre[J]. Construction and Building Materials, 2010, 24(2): 193-201. [54] SOROUSHIAN P, WON J P, HASSAN M. Durability characteristics of CO2-cured cellulose fiber reinforced cement composites[J]. Construction and Building Materials, 2012, 34: 44-53. [55] NEVES A Jr, FERREIRA S R, TOLEDO FILHO R D, et al. Effect of early age curing carbonation on the mechanical properties and durability of high initial strength Portland cement and lime-pozolan composites reinforced with long sisal fibres[J]. Composites Part B: Engineering, 2019, 163: 351-362. [56] 樊 华,盛 莉.秸秆纤维水泥基材料的性能试验研究[J].安徽农业大学学报,2011,38(4):643-646. FAN H, SHENG L. Experimental studies on performance of cement-based straw fiber material[J]. Journal of Anhui Agricultural University, 2011, 38(4): 643-646 (in Chinese). [57] 沈寒知.热处理植物纤维/聚乳酸复合材料的制备与性能研究[D].广州:华南理工大学,2011. SHEN H Z. Preparation and properties of heat-treated plant fiber/poly (lactic acid) composites[D]. Guangzhou: South China University of Technology, 2011 (in Chinese). [58] PRASAD B M, SAIN M M. Mechanical properties of thermally treated hemp fibers in inert atmosphere for potential composite reinforcement[J]. Materials Research Innovations, 2003, 7(4): 231-238. [59] 赵 鑫,汪殿龙,孙占英.天然纤维表面改性及其在复合材料中的应用进展[J].工程塑料应用,2020,48(10):167-171. ZHAO X, WANG D L, SUN Z Y. Progress on surface modification of natural fiber and its application in composites[J]. Engineering Plastics Application, 2020, 48(10): 167-171 (in Chinese). [60] SELLAMI A, MERZOUD M, AMZIANE S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers[J]. Construction and Building Materials, 2013, 47: 1117-1124. [61] 张 伟.等离子体改性纤维增强单板层积材的研究[D].南京:南京林业大学,2020. ZHANG W. Research on the plasma-modified fiber reinforced laminated veneer lumber[D]. Nanjing: Nanjing Forestry University, 2020 (in Chinese). [62] OLIVEIRA F R, ERKENS L, FANGUEIRO R, et al. Surface modification of banana fibers by DBD plasma treatment[J]. Plasma Chemistry and Plasma Processing, 2012, 32(2): 259-273. [63] 李善明,邢雪峰,林兰英,等.高能微波预处理辐射松木材的弯曲性能研究[J].木材工业,2020,34(5):1-6. LI S M, XING X F, LIN L Y, et al. Effect of high energy density microwave pretreatment on bendability of radiata pine(pinus radiata) wood[J]. China Wood Industry, 2020, 34(5): 1-6 (in Chinese). [64] CLARAMUNT J, ARDANUY M, GARCÍA-HORTAL J A, et al. The hornification of vegetable fibers to improve the durability of cement mortar composites[J]. Cement and Concrete Composites, 2011, 33(5): 586-595. [65] LIU L F, YU J Y, CHENG L D, et al. Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(5): 669-674. [66] 盛 莉.稻草-EPS复合轻质保温墙体材料的研究[D].南昌:南昌大学,2011. SHENG L. Study on rice straw-EPS composite material with lightweight and thermal insulation performance[D]. Nanchang: Nanchang University, 2011 (in Chinese). [67] DE KLERK M D, KAYONDO M, MOELICH G M, et al. Durability of chemically modified sisal fibre in cement-based composites[J]. Construction and Building Materials, 2020, 241: 117835. [68] 马红亮,陈 健,孔振武.复合材料用天然植物纤维改性研究进展[J].生物质化学工程,2019,53(4):50-58. MA H L, CHEN J, KONG Z W. Progress on modification of natural plant fiber for composites[J]. Biomass Chemical Engineering, 2019, 53(4): 50-58 (in Chinese). [69] 程泽三.改性剑麻纤维增强水泥砂浆性能研究[D].武汉:武汉轻工大学,2021. CHENG Z S. Properties of modified sisal fiber reinforced cement mortar[D]. Wuhan: Wuhan Polytechnic University, 2021 (in Chinese). [70] AKINYEMI A B, OMONIYI E T, ONUZULIKE G. Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites[J]. Construction and Building Materials, 2020, 245: 118405. [71] BILBA K, ARSENE M A. Silane treatment of bagasse fiber for reinforcement of cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(9): 1488-1495. |
[1] | 刘恩铭, 林明强, 谢群. 再生粗骨料混凝土抗冻性能研究进展[J]. 硅酸盐通报, 2022, 41(9): 2963-2978. |
[2] | 韩强强, 路伟, 姜鲁, 王亚妹. 微生物菌落体系对混凝土裂缝自修复效果的影响综述[J]. 硅酸盐通报, 2022, 41(9): 2993-3007. |
[3] | 付宏渊, 付思妮, 邱祥, 蒋煌斌, 王江营. 纳米Al2O3协同水性环氧树脂对水泥基锚固注浆材料改性研究[J]. 硅酸盐通报, 2022, 41(9): 3016-3027. |
[4] | 王传林, 张思仪, 黄俊轩, 姜涛, 梁萍, 周芷冰, 王屹鸿. 絮凝剂对硅酸盐水泥砂浆性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3028-3035. |
[5] | 徐鑫, 张鸿儒, 季韬, 赵宝军, 姚杰. 再生细骨料含水状态对砂浆性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3036-3046. |
[6] | 佘亮, 傅平丰, 邓威, 陈雨齐, 王显聪. 联合活化多元辅助胶凝材料对蒸养混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3059-3067. |
[7] | 肖世玉, 彭丙杰, 吴涛, 罗小东, 陶俊. 砂率及机制砂特性对混凝土流动性与颗粒膜层厚度的影响[J]. 硅酸盐通报, 2022, 41(9): 3068-3076. |
[8] | 单继雄, 李军, 侯永生, 胡艳民, 刘畅. 钙铝类水滑石对混凝土抗盐冻性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3084-3090. |
[9] | 余波, 黄俊辉, 汪加梁, 秦荷成. 考虑材料参数和应力水平的氯离子扩散系数多因素预测模型[J]. 硅酸盐通报, 2022, 41(9): 3091-3099. |
[10] | 王萧萧, 冯蓉蓉, 荆磊, 刘曙光, 闫长旺, 姜琳. 冰凌作用下天然浮石混凝土磨损规律研究[J]. 硅酸盐通报, 2022, 41(9): 3100-3106. |
[11] | 楼建敏, 张国辉, 杨振东, 孙俊崇, 李虎. 基于楔入劈拉法的湿态混凝土双K断裂特性试验研究[J]. 硅酸盐通报, 2022, 41(9): 3107-3114. |
[12] | 张平, 马旭东, 韩世界, 古龙龙, 王章彦. 养护温度对凝灰岩基胶凝材料力学性能的影响机理[J]. 硅酸盐通报, 2022, 41(9): 3148-3153. |
[13] | 赵雅明, 张振, 王畔, 张明飞. 矿物掺合料对UHPC性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3170-3175. |
[14] | 刘名扬, 周彬, 颜峰, 陈龙江, 侯美晴. 铁尾矿-钢渣集料微表处混合料路用性能及耐久性试验研究[J]. 硅酸盐通报, 2022, 41(9): 3176-3189. |
[15] | 王晨晨, 王学志, 陈东林, 贺晶晶. 基于正交试验的粉煤灰-硅锰渣再生混凝土力学性能研究[J]. 硅酸盐通报, 2022, 41(9): 3190-3201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||