[1] LEE K M, LEE H K, LEE S H, et al. Autogenous shrinkage of concrete containing granulated blast-furnace slag[J]. Cement and Concrete Research, 2006, 36(7): 1279-1285. [2] HU X, SHI C J, SHI Z G, et al. Early age shrinkage and heat of hydration of cement-fly ash-slag ternary blends[J]. Construction and Building Materials, 2017, 153: 857-865. [3] BENTZ D P, SNYDER K A. Protected paste volume in concrete: extension to internal curing using saturated lightweight fine aggregate[J]. Cement and Concrete Research, 1999, 29(11): 1863-1867. [4] ASLAM M, SHAFIGH P, JUMAAT M Z. Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bio-products[J]. Journal of Cleaner Production, 2016, 127: 183-194. [5] LEE K H, YANG K H, YOON H S. Shrinkage strains of lightweight aggregate concrete using expanded bottom ash and dredged soil granules[J]. Construction and Building Materials, 2018, 188: 934-945. [6] AL-KHAIAT H, HAQUE M N. Effect of initial curing on early strength and physical properties of a lightweight concrete[J]. Cement and Concrete Research, 1998, 28(6): 859-866. [7] 董淑慧,张宝生,葛 勇,等.轻骨料性能对界面区微观结构的影响[J].沈阳建筑大学学报(自然科学版),2009,25(6):1120-1124. DONG S H, ZHANG B S, GE Y, et al. Effect of property of lightweight aggregate on microstructure in the interfacial transition zone[J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(6): 1120-1124 (in Chinese). [8] 孔丽娟,葛 勇,张宝生,等.陶粒对次轻混凝土的强度和抗渗性的影响[J].材料研究学报,2008,22(1):98-101. KONG L J, GE Y, ZHANG B S, et al. Effect of ceramsite variety on strength and impermeability of specified density concrete[J]. Chinese Journal of Materials Research, 2008, 22(1): 98-101 (in Chinese). [9] ELSHARIEF A, COHEN M D, OLEK J. Influence of lightweight aggregate on the microstructure and durability of mortar[J]. Cement and Concrete Research, 2005, 35(7): 1368-1376. [10] CHIA K S, ZHANG M H. Water permeability and chloride penetrability of high-strength lightweight aggregate concrete[J]. Cement and Concrete Research, 2002, 32(4): 639-645. [11] ALEXANDRE B J, GOMES M G, REAL S. Capillary absorption of structural lightweight aggregate concrete[J]. Materials and Structures, 2015, 48(9): 2869-2883. [12] 葛 勇,孔丽娟,张宝生,等.陶粒对混凝土结构及毛细吸水性能的影响[J].硅酸盐学报,2008,36(7):934-938+945. GE Y, KONG L J, ZHANG B S, et al. Effects of aglite on structure and capillary water absorption property of concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36(7): 934-938+945 (in Chinese). [13] 孙道胜,李 洋,张高展.轻集料混凝土界面区形成与作用机理研究进展[J].硅酸盐通报,2016,35(1):185-191. SUN D S, LI Y, ZHANG G Z. Review on the mechanism of formation and action of the interfacial transition zone in light aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 185-191 (in Chinese). [14] 陈惠苏,孙 伟,PIET S.水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素[J].硅酸盐学报,2004,32(1):70-79. CHEN H S, SUN W, PIET S. Interfacial transition zone between aggregate and paste in cementitious composites (ⅱ): mechanism of formation and degradation of interfacial transition zone microstructure, and its influence factors[J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 70-79 (in Chinese). [15] SIKORA P, RUCINSKA T, STEPHAN D, et al. Evaluating the effects of nanosilica on the material properties of lightweight and ultra-lightweight concrete using image-based approaches[J]. Construction and Building Materials, 2020, 264: 120241. [16] LO T Y, CUI H Z. Effect of porous lightweight aggregate on strength of concrete[J]. Materials Letters, 2004, 58(6): 916-919. [17] 郑秀华,张宝生.页岩陶粒预湿处理对轻集料混凝土的强度和抗冻性的影响[J].硅酸盐学报,2005,33(6):758-762. ZHENG X H, ZHANG B S. Effect of pre-wetted shale ceramsite on strength and frost-resistance of lightweight aggregate concrete[J]. Journal of the Chinese Ceramic Society, 2005, 33(6): 758-762 (in Chinese). [18] 张高展,葛竞成,丁庆军,等.轻质超高性能混凝土的制备及性能形成机理[J].硅酸盐学报,2021,49(2):381-390. ZHANG G Z, GE J C, DING Q J, et al. Preparation and formation mechanism of lightweight ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 381-390 (in Chinese). [19] 赵铁军.混凝土渗透性[M].北京:科学出版社,2006. ZHAO T J. Permeability of concrete[M]. Beijing: Science Press, 2006 (in Chinese). [20] DIAMOND S. Considerations in image analysis as applied to investigations of the ITZ in concrete[J]. Cement and Concrete Composites, 2001, 23(2/3): 171-178. [21] WASSERMAN R, BENTUR A. Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength[J]. Cement and Concrete Composites, 1996, 18(1): 67-76. [22] 王 智,史才军,钱觉时,等.表面处理轻集料混凝土的性能[J].硅酸盐学报,2008,36(1):54-60. WANG Z, SHI C J, QIAN J S, et al. Properties of concrete with surface-treated lightweight aggregate[J]. Journal of the Chinese Ceramic Society, 2008, 36(1): 54-60 (in Chinese). [23] 邱继生,邢 敏,杨占鲁,等.冻融作用下聚丙烯纤维煤矸石混凝土孔结构研究[J].混凝土与水泥制品,2020(6):41-44+48. QIU J S, XING M, YANG Z L, et al. Pore structure characteristics of polypropylene fibre coal gangue concrete under freeze-thaw[J]. China Concrete and Cement Products, 2020(6): 41-44+48 (in Chinese). [24] 邢秉元,程鹏宇,唐继朋,等.冻融循环作用下饱水砂浆孔结构的演变规律[J].硅酸盐学报,2021,49(2):331-339. XING B Y, CHENG P Y, TANG J P, et al. Pore structure evolution of water-saturated mortar under freeze-thaw cycles[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 331-339 (in Chinese). [25] FAURE P, PETER U, LESUEUR D, et al. Water transfers within hemp lime concrete followed by NMR[J]. Cement and Concrete Research, 2012, 42(11): 1468-1474. [26] FOURMENTIN M, FAURE P, RODTS S, et al. NMR observation of water transfer between a cement paste and a porous medium[J]. Cement and Concrete Research, 2017, 95: 56-64. [27] 李 军,罗 健,卢忠远,等.碱激发高钛矿渣轻集料的性能及应用(英文)[J].硅酸盐学报,2018,46(11):1603-1612. LI J, LUO J, LU Z Y, et al. Properties and application of lightweight aggregates based on alkali-activated ground granulated blast furnace titanium slag[J]. Journal of the Chinese Ceramic Society, 2018, 46(11): 1603-1612. [28] 胡曙光,王发洲,丁庆军.轻集料与水泥石的界面结构[J].硅酸盐学报,2005,33(6):713-717. HU S G, WANG F Z, DING Q J. Interface structure between lightweight aggregate and cement paste[J]. Journal of the Chinese Ceramic Society, 2005, 33(6): 713-717 (in Chinese). [29] ELSHARIEF A, COHEN M D, OLEK J. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone[J]. Cement and Concrete Research, 2003, 33(11): 1837-1849. [30] CAI J, JIN T, KOU J, et al. Lucas-washburn equation-based modeling of capillary-driven flow in porous systems[J]. Langmuir, 2021, 37(5): 1623-1636. |