欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (1): 249-257.

所属专题: 陶瓷

• 陶瓷 • 上一篇    下一篇

基于深度学习的平纹Cf/SiC复合材料原位拉伸损伤演化与断裂分析

杜永龙1, 张毅2, 王龙3, 郭纬愉1, 程相伟1, 张大旭1   

  1. 1.上海交通大学船舶海洋与建筑工程学院,上海 200240;
    2.西北工业大学,超高温结构复合材料重点实验室,西安 710072;
    3.北京强度环境研究所,可靠性与环境工程技术重点实验室,北京 100076
  • 收稿日期:2021-08-22 修订日期:2021-09-29 出版日期:2022-01-15 发布日期:2022-02-10
  • 通信作者: 张大旭,博士,教授。E-mail:daxu.zhang@sjtu.edu.cn
  • 作者简介:杜永龙(1994—),男,博士研究生。主要从事陶瓷基复合材料力学研究。E-mail:duxianshengzuibang@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金(12072192,U1831105,51802263)

In-Situ Tensile Damage Evolution and Fracture Analysis of Plain Weave Cf/SiC Composites Based on Deep Learning

DU Yonglong1, ZHANG Yi2, WANG Long3, GUO Weiyu1, CHENG Xiangwei1, ZHANG Daxu1   

  1. 1. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China;
    3. Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Structure and Environment Engineering, Beijing 100076, China
  • Received:2021-08-22 Revised:2021-09-29 Online:2022-01-15 Published:2022-02-10

摘要: 为揭示平纹Cf/SiC复合材料的拉伸损伤演化及失效机理,开展了X射线CT原位拉伸试验,获得材料的三维重构图像,利用深度学习的图像分割方法,准确识别出拉伸裂纹并实现其三维可视化。分析了平纹Cf/SiC复合材料损伤演化与失效机理,基于裂纹的三维可视化结果对材料损伤进行了定量表征。结果表明:平纹Cf/SiC复合材料的拉伸力学行为呈现非线性,拉伸过程中主要出现基体开裂、界面脱黏、纤维断裂及纤维拔出等损伤;初始缺陷易引起材料损伤,孔隙多的部位裂纹数量也多;纤维束外基体裂纹可扩展至纤维束内部,并发生裂纹偏转。基于深度学习的智能图像分割方法为定量评估陶瓷基复合材料损伤演化与失效机理提供了有效分析手段。

关键词: 陶瓷基复合材料, Cf/SiC复合材料, 损伤, 断裂, 原位试验, 人工智能

Abstract: In order to reveal the tensile damage evolution and failure mechanism of plain weave Cf/SiC composites, the X-ray CT in-situ tensile test was carried out to obtain the three-dimensional reconstructed image of the material. The deep learning based image segmentation method was used to accurately identify the tensile crack and realize its three-dimensional visualization. The damage evolution and failure mechanism of plain weave Cf/SiC composites were analyzed, and the damage was quantitatively characterized based on the three-dimensional visualization results. The results show that the tensile mechanical behavior of plain weave Cf/SiC composites is nonlinear, and damages such as matrix cracking, interface debonding, fiber fracture, and fiber pull-out occur during the tensile process. The initial defects are easy to cause material damage, and the higher the porosity, the more cracks there are. The matrix crack outside the fiber tow can extend to the inside of the fiber tow and the crack deflection occurs. The deep learning based intelligence image segmentation method provides an effective analysis method to quantitatively evaluate the damage evolution and failure mechanism of ceramic matrix composites.

Key words: ceramic matrix composite, Cf/SiC composite, damage, fracture, in-situ test, artificial intelligence

中图分类号: