[1] 李先顺,李 刚.中、欧标准中混凝土结构基本要求的对比研究[J].建筑结构,2020,50(5):99-103+92. LI X S, LI G. Comparative study on basic requirements of concrete structure between Chinese and European standards[J]. Building Structure, 2020, 50(5): 99-103+92 (in Chinese). [2] 王瑜玲,王春福,张飞燕.3D打印混凝土性能要求及相关外加剂研究进展[J].硅酸盐通报,2021,40(6):1844-1854. WANG Y L, WANG C F, ZHANG F Y. Review on performance requirements and related admixtures of 3D printed concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1844-1854 (in Chinese). [3] SHAMSUDIN M M H, HAMID N H, FAUZI M A M. Compressive and flexural strength of concrete containing recycled polyethylene terephthalate (PET)[J]. Key Engineering Materials, 2021, 879: 13-21. [4] 维利思,申向东,刘 倩,等.不同风积沙混凝土强度的影响因素研究[J].硅酸盐通报,2019,38(9):2933-2940+2946. WEI L S, SHEN X D, LIU Q, et al. Influencing factors of different aeolian sand concrete strength[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2933-2940+2946 (in Chinese). [5] 肖 倍,安旭文,杨 瑞,等.再生混凝土基本力学性能试验及其影响因素研究[J].混凝土,2018(11):32-36+40. XIAO B, AN X W, YANG R, et al. Experimental research on basic mechanical characteristics of recycled aggregate concrete and influencing factors[J]. Concrete, 2018(11): 32-36+40 (in Chinese). [6] 吴剑锋,李慧剑,王彩华,等.基于强度表征的混凝土脆性指标影响因素研究[J].力学季刊,2020,41(3):528-536. WU J F, LI H J, WANG C H, et al. Study on influence factors of the brittleness index of concrete based on strength[J]. Chinese Quarterly of Mechanics, 2020, 41(3): 528-536 (in Chinese). [7] 高冠一,张 铖,麻凤海.混凝土抗碳化性能影响因素试验研究[J].混凝土,2020(6):30-32. GAO G Y, ZHANG C, MA F H. Experimental study on influencing factors of concrete carbonation resistance[J]. Concrete, 2020(6): 30-32 (in Chinese). [8] 谢吉程,张 云,杜越明,等.机制砂混凝土耐磨性的主要影响因素分析及多因素计算模型[J].硅酸盐通报,2020,39(12):3812-3822. XIE J C, ZHANG Y, DU Y M, et al. Analysis of major influence factors and multi-factor calculation model of abrasion resistance of manufactured sand concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3812-3822 (in Chinese). [9] 李志新,赖志琴,龙云墨,等.基于模式识别神经网络的水资源配置评价模型研究[J].中国农村水利水电,2018(11):61-66. LI Z X, LAI Z Q, LONG Y M, et al. Research on the evaluation model of water resources configuration based on pattern recognition neural network[J]. China Rural Water and Hydropower, 2018(11): 61-66 (in Chinese). [10] ELHAKIM A F, EL KHOULY M A A, AWAD R. Three dimensional modeling of laterally loaded pile groups resting in sand[J]. HBRC Journal, 2016, 12(1): 78-87. [11] 李地红,高 群,夏 娴,等.基于BP神经网络的混凝土综合性能预测[J].材料导报,2019,33(s2):317-320. LI D H, GAO Q, XIA X, et al. Prediction of comprehensive performance of concrete based on BP neural network[J]. Materials Reports, 2019, 33(s2): 317-320 (in Chinese). [12] CHEN S Y, GU C S, LIN C N, et al. Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement[J]. Engineering With Computers, 2021, 37(3): 1943-1959. [13] TIPPING M E. Escaping the convex hull with extrapolated vector machines[M]//Advances in Neural Information Processing Systems 14. The MIT Press, 2002: 652-658. [14] 郭 珉,石洪波,冀素琴.贝叶斯网络结构稀疏学习研究进展[J].模式识别与人工智能,2016,29(10):907-923. GUO M, SHI H B, JI S Q. Survey of sparse structure learning of Bayesian networks[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(10): 907-923 (in Chinese). [15] 金 艳,田 田,姬红兵.基于稀疏贝叶斯学习的码元速率估计[J].电子与信息学报,2018,40(7):1598-1603. JIN Y, TIAN T, JI H B. Symbol rate estimation based on sparse Bayesian learning[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1598-1603 (in Chinese). [16] DEO R C, SAMUI P, KIM D. Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(6): 1769-1784. [17] CAMPS-VALLS G, MARTINEZ-RAMON M, ROJO-ALVAREZ J L, et al. Nonlinear system identification with composite relevance vector machines[J]. IEEE Signal Processing Letters, 2007, 14(4): 279-282. [18] 邱思语,杨洪耕.稀疏贝叶斯回归及其在谐波电流异常检测中的应用[J].电力系统及其自动化学报,2017,29(5):104-107. QIU S Y, YANG H G. Sparse Bayesian regression and its application to anomaly detection of harmonic current[J]. Proceedings of the CSU-EPSA, 2017, 29(5): 104-107 (in Chinese). [19] 杨国鹏,周 欣,余旭初.稀疏贝叶斯模型与相关向量机学习研究[J].计算机科学,2010,37(7):225-228. YANG G P, ZHOU X, YU X C. Research on sparse Bayesian model and the relevance vector machine[J]. Computer Science, 2010, 37(7): 225-228 (in Chinese). [20] 张 研,邝贺伟.地震震级预测的相关向量机模型[J].世界地震工程,2020,36(1):212-221. ZHANG Y, KUANG H W. Relevance vector machine model for earthquake magnitude prediction[J]. World Earthquake Engineering, 2020, 36(1): 212-221 (in Chinese). |