硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (8): 2687-2701.
袁绮1,2, 谭划1,2,3, 杨廷旺4, 陆文龙4, 臧佳栋4, 李浩宇4, 鄢文超4, 张升伟4, 卢亚1,2, 张海波1,2,3
收稿日期:
2021-04-28
修回日期:
2021-07-23
出版日期:
2021-08-15
发布日期:
2021-09-02
通讯作者:
谭 划,博士。E-mail:hua_tan@hust.edu.cn张海波,博士,教授。E-mail:hbzhang@hust.edu.cn
作者简介:
袁 绮(2000—),女。主要从事多孔陶瓷方面的研究。E-mail:2521535043@qq.com
基金资助:
YUAN Qi1,2, TAN Hua1,2,3, YANG Tingwang4, LU Wenlong4, ZANG Jiadong4, LI Haoyu4, YAN Wenchao4, ZHANG Shengwei4, LU Ya1,2, ZHANG Haibo1,2,3
Received:
2021-04-28
Revised:
2021-07-23
Online:
2021-08-15
Published:
2021-09-02
摘要: 近年来,多孔陶瓷材料在保温、气体过滤、催化载体、分离膜、窑具、骨和牙齿的生物医学替代品,以及传感器材料等领域应用越来越广泛。针对多孔陶瓷制备工艺和性能的研究呈现快速发展的趋势,并取得了大量的研究成果。本文以多孔陶瓷的制备工艺为主线,综述了部分烧结法、牺牲模板法、复制模板法、直接发泡法和3D打印法等5种主要多孔陶瓷制备方法的发展现状与研究成果。同时也探讨了各种方法的优缺点以及未来的发展方向,为多孔陶瓷的进一步发展提供了指导和参考。
中图分类号:
袁绮, 谭划, 杨廷旺, 陆文龙, 臧佳栋, 李浩宇, 鄢文超, 张升伟, 卢亚, 张海波. 多孔陶瓷的制备方法及研究现状[J]. 硅酸盐通报, 2021, 40(8): 2687-2701.
YUAN Qi, TAN Hua, YANG Tingwang, LU Wenlong, ZANG Jiadong, LI Haoyu, YAN Wenchao, ZHANG Shengwei, LU Ya, ZHANG Haibo. Preparation Methods and Research Status of Porous Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2687-2701.
[1] OHJI T, FUKUSHIMA M. Macro-porous ceramics: processing and properties[J]. International Materials Reviews, 2012, 57(2): 115-131. [2] NANJANGUD S C, BREZNY R, GREEN D J. Strength and Young's modulus behavior of a partially sintered porous alumina[J]. Journal of the American Ceramic Society, 1995, 78(1): 266-268. [3] HARDY D, GREEN D J. Mechanical properties of a partially sintered alumina[J]. Journal of the European Ceramic Society, 1995, 15(8): 769-775. [4] BERGIN A, VOIGT C, FRITZSCH R, et al. Experimental study on the chemical stability of phosphate-bonded Al2O3-based ceramic foam filters (CFFs)[J]. Metallurgical and Materials Transactions B, 2021, 52(4): 2008-2025. [5] GONCHARUK V V, OGENKO V M, KUCHERUK D D, et al. Water purification by microfiltration ceramic membranes modified with pyrocarbon and silica[J]. Journal of Water Chemistry and Technology, 2019, 41(4): 248-252. [6] DENG Z Y, FUKASAWA T, ANDO M, et al. High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3[J]. Journal of the American Ceramic Society, 2001, 84(3): 485-491. [7] DENG Z Y, FUKASAWA T, ANDO M, et al. Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide[J]. Journal of the American Ceramic Society, 2001, 84(11): 2638-2644. [8] CLAUSSEN N, WU S X, HOLZ D. Reaction bonding of aluminum oxide (RBAO) composites: processing, reaction mechanisms and properties[J]. Journal of the European Ceramic Society, 1994, 14(2): 97-109. [9] LIU J J, REN B, RONG Y D, et al. Highly porous alumina cellular ceramics bonded by in situ formed mullite prepared by gelation-assisted Al2O3-Si particle-stabilized foams[J]. Ceramics International, 2020, 46(8): 12282-12287. [10] SUZUKI Y, MORGAN P E D, OHJI T. New uniformly porous CaZrO3/MgO composites with three-dimensional network structure from natural dolomite[J]. Journal of the American Ceramic Society, 2000, 83(8): 2091-2093. [11] SUZUKI Y, KONDO N, OHJI T, et al. Uniformly porous composites with 3-D network structure (UPC-3D) for high-temperature filter applications[J]. International Journal of Applied Ceramic Technology, 2005, 1(1): 76-85. [12] SUZUKI Y, AWANO M, KONDO N, et al. CH4-sensing and high-temperature mechanical properties of porous CaZrO3/MgO composites with three-dimensional network structure[J]. Journal of the Ceramic Society of Japan, 2001, 109(1265): 79-81. [13] SUZUKI Y, KONDO N, OHJI T. Reactive synthesis of a porous calcium zirconate/spinel composite with idiomorphic spinel grains[J]. Journal of the American Ceramic Society, 2003, 86(7): 1128-1131. [14] SHE J H, YANG J F, KONDO N, et al. High-strength porous silicon carbide ceramics by an oxidation-bonding technique[J]. Journal of the American Ceramic Society, 2002, 85(11): 2852-2854. [15] DING S Q, ZENG Y P, JIANG D L. Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant[J]. Materials Letters, 2007, 61(11/12): 2277-2280. [16] DEY A, KAYAL N, CHAKRABARTI O, et al. Evaluation of air permeation behavior of porous SiC ceramics synthesized by oxidation-bonding technique[J]. International Journal of Applied Ceramic Technology, 2013, 10(6): 1023-1033. [17] BUKHARI S Z A, HA J H, LEE J, et al. Oxidation-bonded SiC membrane for microfiltration[J]. Journal of the European Ceramic Society, 2018, 38(4): 1711-1719. [18] CECEN B, TOPATES G, KARA A, et al. Biocompatibility of silicon nitride produced via partial sintering & tape casting[J]. Ceramics International, 2021, 47(3): 3938-3945. [19] INAGAKI Y, OHJI T, KANZAKI S, et al. Fracture energy of an aligned porous silicon nitride[J]. Journal of the American Ceramic Society, 2000, 83(7): 1807-1809. [20] OHJI T. Microstructural design and mechanical properties of porous silicon nitride ceramics[J]. Materials Science and Engineering: A, 2008, 498(1/2): 5-11. [21] MATYAKUBOV B M, KHOLMUMINOV A A. Anisotropic properties of nanofiber porous materials of fibroin silk and cotton cellulose[J]. Modern Physics Letters B, 2021: 2150276. [22] 邓洋洋,王 帅,姜胜南,等.浅谈放电等离子法制备碳化硼复合陶瓷[J].铁合金,2020,51(4):33-36. DENG Y Y, WANG S, JIANG S N, et al. Discussion on the preparation of boron carbide composite ceramics by spark plasma sintering[J]. Ferro-Alloys, 2020, 51(4): 33-36 (in Chinese). [23] OH S T, TAJIMA K I, ANDO M, et al. Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing[J]. Journal of the American Ceramic Society, 2000, 83(5): 1314-1316. [24] JAYASEELAN D D, KONDO N, BRITO M E, et al. High-strength porous alumina ceramics by the pulse electric current sintering technique[J]. Journal of the American Ceramic Society, 2002, 85(1): 267-269. [25] YANG Y, WANG Y, TIAN W, et al. In situ porous alumina/aluminum titanate ceramic composite prepared by spark plasma sintering from nanostructured powders[J]. Scripta Materialia, 2009, 60(7): 578-581. [26] AKHTAR F, VASILIEV P O, BERGSTRÖM L. Hierarchically porous ceramics from diatomite powders by pulsed current processing[J]. Journal of the American Ceramic Society, 2009, 92(2): 338-343. [27] COLOMBO P, BERNARDO E, BIASETTO L. Novel microcellular ceramics from a silicone resin[J]. Journal of the American Ceramic Society, 2004, 87(1): 152-154. [28] COLOMBO P. Engineering porosity in polymer-derived ceramics[J]. Journal of the European Ceramic Society, 2008, 28(7): 1389-1395. [29] BIASETTO L, COLOMBO P, INNOCENTINI M D M, et al. Gas permeability of microcellular ceramic foams[J]. Industrial & Engineering Chemistry Research, 2007, 46(10): 3366-3372. [30] ANDO A, KAMIKURA M, TAKEOKA Y, et al. Bioresorbable porous β-tricalcium phosphate chelate-setting cements with poly(lactic-co-glycolic acid) particles as pore-forming agent: fabrication, material properties, cytotoxicity, and in vivo evaluation[J]. Science and Technology of Advanced Materials, 2021, 22(1): 511-521. [31] 巫红平,吴任平,于 岩,等.硅藻土基多孔陶瓷的制备及研究[J].硅酸盐通报,2009,28(4):641-645. WU H P, WU R P, YU Y, ET AL. Preparation and research of porous ceramics from diatomite[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(4): 641-645 (in Chinese). [32] DESCAMPS M, RICHART O, HARDOUIN P, et al. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural[J]. Ceramics International, 2008, 34(5): 1131-1137. [33] WANG J J, WEI J. Facile synthesis of Zr(IV)-crosslinked carboxymethyl cellulose/carboxymethyl chitosan hydrogel using PEG as pore-forming agent for enhanced phosphate removal[J]. International Journal of Biological Macromolecules, 2021, 176: 558-566. [34] CHEN F, SHEN Q, YAN F Q, et al. Pressureless sintering of α-Si3N4 porous ceramics using a H3PO4 pore-forming agent[J]. Journal of the American Ceramic Society, 2007, 90(8): 2379-2383. [35] YANG J F, ZHANG G J, KONDO N, et al. Synthesis of porous Si3N4 ceramics with rod-shaped pore structure[J]. Journal of the American Ceramic Society, 2005, 88(4): 1030-1032. [36] ZAKARIA S K, HAKIM MD ZULKIFLI M L, AZHAR TAIB M A, et al. Recycling of wood saw dust waste as green pore forming agent for porous ceramic[J]. IOP Conference Series: Earth and Environmental Science, 2020, 596: 012017. [37] TANG S Y, YANG L, LI G J, et al. Fabrication of ceramic cores via layered extrusion forming using graphite as pore-forming agent[C]//AEIC Academic Exchange Information Centre (China). Proceedings of 2018 4th International Conference on Applied Materials and Manufacturing Technology (ICAMMT 2018), 2018. [38] KHATTAB R M, EL-RAFEI A M, ZAWRAH M F. Fabrication of porous TiO2 ceramics using corn starch and graphite as pore forming agents[J]. Interceram-International Ceramic Review, 2018, 67(4): 30-35. [39] MIN F L, WANG X Y, LI M D, et al. Preparation of high-porosity and high-strength ceramisites from municipal sludge using starch and CaCO3 as a combined pore-forming agent[J]. Journal of Materials in Civil Engineering, 2021, 33(3): 04020502. [40] DELE-AFOLABI T T, AZMAH HANIM M A, OJO-KUPOLUYI O J, et al. Tailored pore structures and mechanical properties of porous alumina ceramics prepared with corn cob pore-forming agent[J]. International Journal of Applied Ceramic Technology, 2021, 18(1): 244-252. [41] KIM Y W, KIM S H, KIM H D, et al. Processing of closed-cell silicon oxycarbide foams from a preceramic polymer[J]. Journal of Materials Science, 2004, 39(18): 5647-5652. [42] ZHANG Q, YANG F J, ZHANG C Z, et al. A novel wire-shaped supercapacitor based on MnO2 nanoflakes and carbon nanotubes with high performance synthesized by sacrificial template method[J]. Applied Surface Science, 2021, 551: 149417. [43] SONG I H, KWON I M, KIM H D, et al. Processing of microcellular silicon carbide ceramics with a duplex pore structure[J]. Journal of the European Ceramic Society, 2010, 30(12): 2671-2676. [44] DÍAZ A, HAMPSHIRE S. Characterisation of porous silicon nitride materials produced with starch[J]. Journal of the European Ceramic Society, 2004, 24(2): 413-419. [45] DÍAZ A, HAMPSHIRE S, YANG J F, et al. Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes[J]. Journal of the American Ceramic Society, 2005, 88(3): 698-706. [46] KIM J G, SIM J H, CHO W S. Preparation of porous (Ba,Sr)TiO3 by adding corn-starch[J]. Journal of Physics and Chemistry of Solids, 2002, 63(11): 2079-2084. [47] NEIRINCK B, FRANSAER J, VAN DER BIEST O, et al. A novel route to produce porous ceramics[J]. Journal of the European Ceramic Society, 2009, 29(5): 833-836. [48] KOH Y H, YOON C B, LEE S M, et al. Thermoplastic green machining for the fabrication of a piezoelectric ceramic/polymer composite with 2-2 connectivity[J]. Journal of the American Ceramic Society, 2005, 88(4): 1060-1063. [49] KOH Y H, LEE E J, YOON B H, et al. Effect of polystyrene addition on freeze casting of ceramic/camphene slurry for ultra-high porosity ceramics with aligned pore channels[J]. Journal of the American Ceramic Society, 2006, 89(12): 3646-3653. [50] FUKASAWA T, ANDO M, OHJI T, et al. Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. Journal of the American Ceramic Society, 2001, 84(1): 230-232. [51] STROJNY-NEDZA A, PIETRZAK K, CHMIELEWSKI M, et al. Al2O3 preforms with gradient porosity for brake disk application[J]. Advances in Science and Technology, 2014, 91: 94-99. [52] FUKASAWA T, DENG Z Y, ANDO M, et al. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process[J]. Journal of the American Ceramic Society, 2002, 85(9): 2151-2155. [53] ZHU X W, JIANG D L, TAN S H, et al. Improvement in the strut thickness of reticulated porous ceramics[J]. Journal of the American Ceramic Society, 2001, 84(7): 1654-1656. [54] VOGT U F, GORBAR M, DIMOPOULOS-EGGENSCHWILER P, et al. Improving the properties of ceramic foams by a vacuum infiltration process[J]. Journal of the European Ceramic Society, 2010, 30(15): 3005-3011. [55] LUYTEN J, THIJS I, VANDERMEULEN W, et al. Strong ceramic foams from polyurethane templates[J]. Advances in Applied Ceramics, 2005, 104(1): 4-8. [56] JUN I K, KOH Y H, KIM H E. Fabrication of a highly porous bioactive glass-ceramic scaffold with a high surface area and strength[J]. Journal of the American Ceramic Society, 2006, 89(1): 391-394. [57] JUN I K, SONG J H, CHOI W Y, et al. Porous hydroxyapatite scaffolds coated with bioactive apatite-wollastonite glass-ceramics[J]. Journal of the American Ceramic Society, 2007, 90(9): 2703-2708. [58] PLESCH G, GORBÁR M, VOGT U F, et al. Reticulated macroporous ceramic foam supported TiO2 for photocatalytic applications[J]. Materials Letters, 2009, 63(3/4): 461-463. [59] TRAVITZKY N, WINDSHEIMER H, FEY T, et al. Preceramic paper-derived ceramics[J]. Journal of the American Ceramic Society, 2008, 91(11): 3477-3492. [60] SINGH M, MARTÍNEZ-FERNÁNDEZ J, DE ARELLANO-LPEZ A R. Environmentally conscious ceramics (ecoceramics) from natural wood precursors[J]. Current Opinion in Solid State and Materials Science, 2003, 7(3): 247-254. [61] SINGH M, SALEM J A. Mechanical properties and microstructure of biomorphic silicon carbide ceramics fabricated from wood precursors[J]. Journal of the European Ceramic Society, 2002, 22(14/15): 2709-2717. [62] VARELA-FERIA F M, RAMIREZ-RICO J, MARTINEZ-FERNANDEZ J, et al. Infiltration and reaction-formation mechanism and microstructural evolution of biomorphic SiC fabricated by Si-melt infiltration[J]. Ceramic Transactions, 2012, 177: 93-101. [63] LEE Y J, KIM S R, KIM Y H, et al. Characterization of microstructure on porous silicon carbide prepared by polymer replica template method[J]. Journal of the Korean Ceramic Society, 2014, 51(6): 539-543. [64] BAI Z K, LI S Z, XU J, et al. Fabrication and gas-sensing properties of hierarchical ZnO replica using down as template[J]. Applied Physics A, 2016, 122(6): 1-7. [65] KLEPEL O, ERLITZ M, GARSUCH A, et al. Template assisted synthesis of porous carbons revisited: where does the porosity come from?[J]. Microporous and Mesoporous Materials, 2016, 224: 163-167. [66] STREITWIESER D A, POPOVSKA N, GERHARD H, et al. Application of the chemical vapor infiltration and reaction (CVI-R) technique for the preparation of highly porous biomorphic SiC ceramics derived from paper[J]. Journal of the European Ceramic Society, 2005, 25(6): 817-828. [67] FEY T, BETKE U, RANNABAUER S, et al. Reticulated replica ceramic foams: processing, functionalization, and characterization[J]. Advanced Engineering Materials, 2017, 19(10): 1700369. [68] MATSUDA H, MIZUSHIMA T, KUWABARA M. Low-temperature synthesis and electrical properties of semiconducting BaTiO3 ceramics by the Sol-gel method with high concentration alkoxide solutions[J]. Journal of the Ceramic Society of Japan, 1999, 107(1243): 290-292. [69] QIAN J M, JIN Z H. Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure[J]. Journal of the European Ceramic Society, 2006, 26(8): 1311-1316. [70] YAMANE H, KAWAMURA F, YAMADA T. Low-temperature synthesis of biomorphic cellular SiC ceramics from wood by using a Na flux[J]. Journal of the Ceramic Society of Japan, 2008, 116(1349): 163-165. [71] ZHANG X, JIANG X N, SUN C. Micro-stereolithography of polymeric and ceramic microstructures[J]. Sensors and Actuators A: Physical, 1999, 77(2): 149-156. [72] TAJIRI H A, AL-QURESHI H A. Manufacturing and characterization of porous ceramic capillary membranes for enzyme functionalization through click chemistry[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(4): 1-10. [73] RAMBO C R, SIEBER H, GENOVA L A. Synthesis of porous biomorphic α/β-Si3N4 composite from sea sponge[J]. Journal of Porous Materials, 2008, 15(4): 419-425. [74] DU Z P, YAO D X, XIA Y F, et al. Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics[J]. Ceramics International, 2020, 46(9): 12942-12947. [75] FUJI M, KATO T, ZHANG F Z, et al. Effects of surfactants on the microstructure and some intrinsic properties of porous building ceramics fabricated by gelcasting[J]. Ceramics International, 2006, 32(7): 797-802. [76] DAOUD A, ABOU EL-KHAIR M T, FIROUZ F, et al. Microstructure aspects of 7075 Al-SiO2 composite foams produced by direct melt foaming method[J]. Key Engineering Materials, 2020, 835: 7-12. [77] BARG S, SOLTMANN C, ANDRADE M, et al. Cellular ceramics by direct foaming of emulsified ceramic powder suspensions[J]. Journal of the American Ceramic Society, 2008, 91(9): 2823-2829. [78] BARG S, KOCH D, GRATHWOHL G. Processing and properties of graded ceramic filters[J]. Journal of the American Ceramic Society, 2009, 92(12): 2854-2860. [79] ZHENG Y, LUO X D, YOU J G, et al. Ceramic foams with highly open channel structure from direct foaming method in combination with hollow spheres as pore-former[J]. Journal of Asian Ceramic Societies, 2021, 9(1): 24-29. [80] KIM Y W, WANG C M, PARK C B. Processing of porous silicon oxycarbide ceramics from extruded blends of polysiloxane and polymer microbead[J]. Journal of the Ceramic Society of Japan, 2007, 115(1343): 419-424. [81] WANG H, CHEN Z W, LIU L L, et al. Synthesis of a foam ceramic based on ceramic tile polishing waste using SiC as foaming agent[J]. Ceramics International, 2018, 44(9): 10078-10086. [82] ZHAO J, YANG C, SHIMAI S, et al. The effect of wet foam stability on the microstructure and strength of porous ceramics[J]. Ceramics International, 2018, 44(1): 269-274. [83] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Tailoring the microstructure of particle-stabilized wet foams[J]. Langmuir, 2007, 23(3): 1025-1032. [84] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Ultrastable particle-stabilized foams[J]. Angewandte Chemie International Edition, 2006, 45(21): 3526-3530. [85] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Macroporous ceramics from particle-stabilized wet foams[J]. Journal of the American Ceramic Society, 2007, 90(1): 16-22. [86] SUN X M, ZENG T, ZHOU Y K, et al. 3D printing of porous SiC ceramics added with SiO2 hollow microspheres[J]. Ceramics International, 2020, 46(14): 22797-22804. [87] JOE LOPES A, MACDONALD E, WICKER R B. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication[J]. Rapid Prototyping Journal, 2012, 18(2): 129-143. [88] MANANARES C G, EDUARDO S Z, CAVALCANTE DA SILVA J, et al. Additive manufacturing process selection based on parts' selection criteria[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5/6/7/8): 1007-1014. [89] DAI K R, XU F. Medical application of 3D printing: a powerful tool for personalised treatment[J]. Journal of Shanghai Jiaotong University (Science), 2021, 26(3): 257-258. [90] SARMENT D P, SUKOVIC P, CLINTHORNE N. Accuracy of implant placement with a stereolithographic surgical guide[J]. The International Journal of Oral & Maxillofacial Implants, 2003, 18(4): 571-577. [91] CHAPUT C, CHARTIER T. Fabrication of ceramics by stereolithography[J]. RTejournal, 2007: 7-9. [92] CHIA H N, WU B M. Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9: 4. [93] XIA Y, ZHOU P, CHENG X, et al. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications[J]. Int J Nanomedicine, 2013, 8: 4197-4213. [94] BRUNELLO G, SIVOLELLA S, MENEGHELLO R, et al. Powder-based 3D printing for bone tissue engineering[J]. Biotechnology Advances, 2016, 34(5): 740-753. [95] ONAGORUWA S, BOSE S, BANDYOPADHYAY A. Fused deposition of ceramics (FDC) and composites[J]. Proceedings of Solid Freeform Fabrication Symposium, 2001: 224-231. [96] BILL TSENG T L, CHILUKURI A, PARK S C, et al. Automated quality characterization of 3D printed bone scaffolds[J]. Journal of Computational Design and Engineering, 2014, 1(3): 194-201. [97] ESSLINGER S, GREBHARDT A, JAEGER J, et al. Additive manufacturing of β-tricalcium phosphate components via fused deposition of ceramics (FDC)[J]. Materials, 2020, 14(1): 156. [98] JAFARI M A, HAN W, MOHAMMADI F, et al. A novel system for fused deposition of advanced multiple ceramics[J]. Rapid Prototyping Journal, 2000, 6(3): 161-175. [99] LIU S, MO L N, BI G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry[J]. Ceramics International, 2021, 47(15): 21108-21116. [100] WU C T, LUO Y X, CUNIBERTI G, et al. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability[J]. Acta Biomaterialia, 2011, 7(6): 2644-2650. [101] 郝艳霞.氧化锆多孔膜和涂层的制备、表征及性能研究[D].南京:南京理工大学,2003. HAO Y X. Study on the preparation, characterization and properties of porous zirconia membrane and coating[D]. Nanjing: Nanjing University of Science and Technology, 2003 (in Chinese). [102] 徐 阳.Ni-Cr-Al多孔材料的制备及其抗高温氧化性能研究[D].湘潭:湘潭大学,2018. XU Y. The fabrication and oxidation resistance of the porous Ni-Cr-Al materials[D]. Xiangtan: Xiangtan University, 2018 (in Chinese). [103] 黄虎军.Ti-Al合金多孔材料的制备与性能研究[D].长沙:中南大学,2007. HUANG H J. Preparation and properties of porous Ti-Al alloy[D]. Changsha: Central South University, 2007 (in Chinese). [104] JAYASEELAN D D, LEE W E, AMUTHARANI D, et al. In situ formation of silicon carbide nanofibers on cordierite substrates[J]. Journal of the American Ceramic Society, 2007, 90(5): 1603-1606. [105] ZHANG X Y, HUO W L, LIU J J, et al. 3D printing boehmite gel foams into lightweight porous ceramics with hierarchical pore structure[J]. Journal of the European Ceramic Society, 2020, 40(3): 930-934. |
[1] | 阿拉腾沙嘎, 陈冠宏, 陈星. 磁场作用下冷冻铸造法制备仿生材料研究进展[J]. 硅酸盐通报, 2021, 40(7): 2348-2359. |
[2] | 何逸宁, 戴高尚, 吴甲民, 张洁, 潘明珠, 陈敬炎, 陈颖, 王永均, 张红星. 环氧树脂含量对激光选区烧结制备多孔煤系高岭土陶瓷性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1950-1956. |
[3] | 金新新, 林鹏, 刘峰, 李赛赛, 李明辉, 夏晓宇, 劳栋, 贾文宝, 单卿. 碳纤维长度以及添加量对碳化硅网状多孔陶瓷性能的影响[J]. 硅酸盐通报, 2021, 40(4): 1330-1337. |
[4] | 王琦琦;刘作冬;于永生;朱盛辉;刘鹏. 低品位钾长石制备多孔保温隔热陶瓷研究[J]. 硅酸盐通报, 2020, 39(7): 2267-2273. |
[5] | 刘涛;刘和义;邓黎明. FCC废催化剂制备泡沫陶瓷[J]. 硅酸盐通报, 2020, 39(2): 568-574. |
[6] | 郑彧;韦中华;张阳;张跃;童亚琦;张伟儒. 多孔二氧化锆基隔热材料的制备及性能[J]. 硅酸盐通报, 2020, 39(11): 3643-3648. |
[7] | 井强山;唐旖天;田永尚;闫新悦;张芮芮;方林霞. 碳粉和锯末复合造孔制备多孔吸声陶瓷[J]. 硅酸盐通报, 2019, 38(12): 3833-383. |
[8] | 范丽;田蒙奎;张杰;张云飞. 温度制度及造孔剂用量对煤矸石基多孔陶瓷膜支撑体性能的影响[J]. 硅酸盐通报, 2018, 37(5): 1781-1787. |
[9] | 金宏;张伟;邓湘云;李建保;祝璐;尹沛羊. 不同铝源对SiC/堇青石复相多孔陶瓷的制备及性能影响[J]. 硅酸盐通报, 2018, 37(2): 403-410. |
[10] | 海万秀;韩凤兰;罗钊;陈浩;白柳扬. 原料配比对工业固废多孔陶瓷性能和形貌的影响[J]. 硅酸盐通报, 2018, 37(12): 3776-3780. |
[11] | 刘洪军;李晓雪;刘长志;李亚敏. SiC多孔预制体的定向冷冻干燥制备工艺研究[J]. 硅酸盐通报, 2018, 37(11): 3433-3437. |
[12] | 贺辉;张颖;张军战;张海昇. 凝胶注模制备多孔陶瓷的研究进展[J]. 硅酸盐通报, 2017, 36(6): 1957-1963. |
[13] | 何峰;刘纳;谢峻林;董盼盼. 脱硝催化剂用堇青石多孔陶瓷的制备与性能研究[J]. 硅酸盐通报, 2017, 36(5): 1464-1469. |
[14] | 张杰;田蒙奎;张云飞. 烧结制度及造孔剂用量对粉煤灰基多孔陶瓷膜支撑体性能的影响[J]. 硅酸盐通报, 2017, 36(3): 785-790. |
[15] | 汪庆刚;黄剑锋;潘利敏;刘一军;李嘉胤;黄玲艳. 粉煤灰基轻质多孔陶瓷的制备及性能研究[J]. 硅酸盐通报, 2017, 36(12): 4129-4134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||