[1] 李雪峰,付 智,王华牢.青藏高原地区混凝土冻融环境量化方法[J].农业工程学报,2018,34(2):169-175. LI X F, FU Z, WANG H L. Quantitative method for freezing-thawing environment of concrete in Qinghai-Tibet plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 169-175 (in Chinese). [2] 武海荣,金伟良,吕清芳,等.基于可靠度的混凝土结构耐久性环境区划[J].浙江大学学报(工学版),2012,46(3):416-423. WU H R, JIN W L, LV Q F, et al. Reliability-based zonation of environmental area according to its effect on durability of concrete structures[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(3): 416-423 (in Chinese). [3] DU L X, FOLLIARD K J. Mechanisms of air entrainment in concrete[J]. Cement and Concrete Research, 2005, 35(8): 1463-1471. [4] SHAH H A, YUAN Q, ZUO S H. Air entrainment in fresh concrete and its effects on hardened concrete-a review[J]. Construction and Building Materials, 2021, 274: 121835. [5] ZHANG H, GAO P W, ZHANG Z X, et al. Effects of parameters of air-avid structure on the salt-frost durability of hardened concrete[J]. Applied Sciences, 2020, 10(2): 632. [6] POWERS T C, HELMUTH R A. Theory of volume changes in hardened Portland-cement paste during freezing[C]//Highway Research Board Proceedings, 1949, 32: 285-297. [7] JIN S S, ZHANG J X, HUANG B S. Fractal analysis of effect of air void on freeze-thaw resistance of concrete[J]. Construction and Building Materials, 2013, 47: 126-130. [8] 中华人民共和国住房和城乡建设部.混凝土结构耐久性设计标准: GB/T 50476—2019[S].北京:中国建筑工业出版社,2019. Ministry of Housing and Urban-Rural Development, PRC. Standard for design of concrete structure durability: GB/T 50476—2019[S]. Beijing: China Building Industry Press, 2019 (in Chinese). [9] HUO J Y, WANG Z J, CHEN H X, et al. Impacts of low atmospheric pressure on properties of cement concrete in plateau areas: a literature review[J]. Materials, 2019, 12(9): 1384. [10] GE X, GE Y, DU Y B, et al. Effect of low air pressure on mechanical properties and shrinkage of concrete[J]. Magazine of Concrete Research, 2018, 70(18): 919-927. [11] LI X F, FU Z, LUO Z. Effect of atmospheric pressure on air content and air void parameters of concrete[J]. Magazine of Concrete Research, 2015, 67(8): 391-400. [12] 李雪峰,付 智.低气压环境对混凝土含气量及气泡稳定性的影响[J].硅酸盐学报,2015,43(8):1076-1082. LI X F, FU Z. Effect of low-pressure of environment on air content and bubble stability of concrete[J]. Journal of the Chinese Ceramic Society, 2015, 43(8): 1076-1082 (in Chinese). [13] 陈 霞,杨华全,周世华,等.混凝土冻融耐久性与气泡特征参数的研究[J].建筑材料学报,2011,14(2):257-262. CHEN X, YANG H Q, ZHOU S H, et al. Research on concrete freezing and thawing durability and characteristic parameters of bubbles[J]. Journal of Building Materials, 2011, 14(2): 257-262 (in Chinese). [14] 张云清,余红发,王甲春.气泡特征对混凝土抗盐冻性能的影响[J].建筑科学与工程学报,2011,28(3):83-87. ZHANG Y Q, YU H F, WANG J C. Effect of air-bubble characteristics on salt frost resistance of concrete[J]. Journal of Architecture and Civil Engineering, 2011, 28(3): 83-87 (in Chinese). [15] 中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S].北京:中国建筑工业出版社,2009. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard method of test for long-term and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Building Industry Press, 2009 (in Chinese). [16] 中华人民共和国交通运输部.公路工程水泥及水泥混凝土试验规程:JTG 3420—2020[S].北京:人民交通出版社,2020. Ministry of Transport of the People's Republic of China. Test methods for cement and cement concrete for highway engineering: JTG 3420—2020[S]. Beijing: China Communications Press, 2020 (in Chinese). [17] 国家能源局.水工混凝土试验规程:DL/T 5150—2017[S].北京:中国电力出版社,2017. National Energy Administration. Test code for hydraulic concrete: DL/T 5150—2017[S]. Beijing: China Electric Power Press, 2017 (in Chinese). [18] 中华人民共和国交通运输部.公路工程混凝土结构耐久性设计规范:JTG/T 3310—2019[S].北京:人民交通出版社,2019. JSTI Group. Code for durability design of concrete structures in highway engineering: JTG/T 3310—2019[S]. Beijing: China Communications Press, 2019 (in Chinese). [19] 中华人民共和国铁道部.铁路混凝土结构耐久性设计规范:TB 10005—2010[S].北京:中国铁道出版社,2010. China Academy of Railway Sciences. Code for durability design of railway concrete structures: TB 10005—2010[S]. Beijing: China Railway Publishing House, 2010 (in Chinese). [20] ZHANG P, LIU G G, PANG C M, et al. Influence of pore structures on the frost resistance of concrete[J]. Magazine of Concrete Research, 2017, 69(6): 271-279. [21] SHON C S, ABDIGALIYEV A, BAGITOVA S, et al. Determination of air-void system and modified frost resistance number for freeze-thaw resistance evaluation of ternary blended concrete made of ordinary Portland cement/silica fume/class F fly ash[J]. Cold Regions Science and Technology, 2018, 155: 127-136. [22] OZYILDIRIM C. Air-void characteristics of concretes in different applications[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1893(1): 70-74. [23] LI H J, XIE Y J, YANG L. Air-void parameters measurement of fresh concrete and hardened concrete[J]. Journal of Central South University, 2013, 20(4): 1103-1108. [24] JERATH S, HANSON N. Effect of fly ash content and aggregate gradation on the durability of concrete pavements[J]. Journal of Materials in Civil Engineering, 2007, 19(5): 367-375. [25] LOMBOY G, WANG K J. Effects of strength, permeability, and air void parameters on freezing-thawing resistance of concrete with and without air entrainment[M]//Recent Advancement in Conrete Freezing-Thawing (F-T). ASTM International, 2010: 135-154. [26] TANESI J, MEININGER R. Freeze-thaw resistance of concrete with marginal air content[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2020(1): 61-66. [27] HOVER K C, PHARES R J. Impact of concrete placing method on air content, air-void system parameters, and freeze-thaw durability[J]. Transportation Research Record: Journal of the Transportation Research Board, 1996, 1532(1): 1-8. [28] 李雪峰.气压环境对不同引气剂性能及引气混凝土气孔结构的影响[J].农业工程学报,2018,34(24):144-150. LI X F. Influence of atmospheric pressure on performance of air entraining agent and air void structures of air-entrained concrete[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 144-150 (in Chinese). [29] 胡泽清,邹一宝,马 芳.用气泡参数判定混凝土抗冻耐久性的探讨[J].粉煤灰,2009,21(3):3-4+13. HU Z Q, ZOU Y B, MA F. Probe into criterion of concrete anti-freeze durability with bubble parameter[J]. Coal Ash, 2009, 21(3): 3-4+13 (in Chinese). [30] PIGEON M L M. Critical air void spacing factors for concretes submitted to slow freeze-thaw cycles[J]. ACI Journal Proceedings, 1981, 78(4): 282-291. [31] ATTIOGBE E K, NMAI C K, GAY F T. Air-void system parameters and freeze-thaw durability of concrete containing superplasticizers[J]. Concrete International, 1992, 14(7): 57-61. [32] GAGNE R, BOISVERT A, PIGEON M. Effect of superplasticizer dosage on mechanical properties, permeability, and freeze-thaw durability of high-strength concretes with and without silica fume[J]. ACI Materials Journal, 1996, 93(2): 111-120. [33] ROBERTS L R, SCHEINER P. Air void system and frost resistance of concrete containing superplasticizers[J]. Special Publication, 1981, 68: 189-214. [34] PIGEON M, GAGNÉ R, DE ATCIN P C, et al. Freezing and thawing tests of high-strength concretes[J]. Cement and Concrete Research, 1991, 21(5): 844-852. [35] ATTIOGBE E K. Predicting freeze-thaw durability of concrete: a new approach[J]. ACI Materials Journal, 1996, 93(5): 457-464. [36] 胡 江,黄佳木,李化建,等.掺合料混凝土抗冻性能及气泡特征参数的研究[J].铁道建筑,2009,49(6):124-127. HU J, HUANG J M, LI H J, et al. Study on frost resistance and bubble characteristic parameters of admixture concrete[J]. Railway Engineering, 2009, 49(6): 124-127 (in Chinese). [37] 武海荣,金伟良,延永东,等.混凝土冻融环境区划与抗冻性寿命预测[J].浙江大学学报(工学版),2012,46(4):650-657. WU H R, JIN W L, YAN Y D, et al. Environmental zonation and life prediction of concrete in frost environments[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(4): 650-657 (in Chinese). |