[1] 蒲心诚.碱矿渣水泥与混凝土[M].北京:科学出版社,2010:4. PU X C. Alkali slag cement and concrete[M].Beijing: Science Press, 2010: 4 (in Chinese). [2] 孔德玉,张俊芝,倪彤元,等.碱激发胶凝材料及混凝土研究进展[J].硅酸盐学报,2009,37(1):151-159. KONG D Y, ZHANG J Z, NI T Y, et al. Research progress on alkali-activated binders and concrete[J]. Journal of the Chinese Ceramic Society, 2009, 37(1): 151-159 (in Chinese). [3] ROY D M. Alkali-activated cements Opportunities and challenges[J]. Cement and Concrete Research, 1999, 29(2): 249-254. [4] BAKHAREV T, SANJAYAN J G, CHENG Y B. Resistance of alkali-activated slag concrete to carbonation[J]. Cement and Concrete Research, 2001, 31(9): 1277-1283. [5] 杨长辉,吕春飞,陈 科,等.碱矿渣水泥砂浆抗碳化性能研究[J].混凝土,2009(8):100-102. YANG C H, LU C F, CHEN K, et al. Carbonation resistance of alkali-activated slag cement mortar[J]. Concrete, 2009(8): 100-102 (in Chinese). [6] 何彤彤.碱激发矿渣的碳化性能研究[D].南京:东南大学,2018. HE T T. Study on the carbonation performance of alkali-activated slag[D]. Nanjing: Southeast University, 2018 (in Chinese). [7] 屠柳青.高性能补偿收缩混凝土碳化行为与机理研究[D].武汉:武汉理工大学,2011. TU L Q. Researches on carbonation behavior and mechanism of shrinkage-compensated high performance concrete[D]. Wuhan: Wuhan University of Technology, 2011 (in Chinese). [8] 何 娟,何俊红,王宇斌.碱矿渣水泥基胶凝材料的碳化特征研究[J].硅酸盐通报,2015,34(4):927-930+936. HE J, HE J H, WANG Y B. Carbonation characteristics of alkali-activated slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(4): 927-930+936 (in Chinese). [9] 何 娟.碱矿渣水泥石碳化行为及机理研究[D].重庆:重庆大学,2011. HE J. Research on the carbonation behavior and mechanism of hardened alkali-activated slag cement pastes[D]. Chongqing: Chongqing University, 2011 (in Chinese). [10] HE J, GAO Q, WU Y, et al. Study on improvement of carbonation resistance of alkali-activated slag concrete[J]. Construction and Building Materials, 2018, 176: 60-67. [11] PARK S M, JANG J, LEE H K. Unlocking the role of MgO in carbonation of alkali-activated slag cements[J]. Inorganic Chemistry Frontiers, 2018, 5: 1661-1670. [12] BERNAL S A, NICOLAS R S, MYERS R J, et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders[J]. Cement and Concrete Research, 2013, 57: 33-43. [13] MORANDEAU A E, WHITE C E. Role of magnesium-stabilized amorphous calcium carbonate in mitigating the extent of carbonation in alkali-activated slag[J]. Chemistry of Materials, 2015, 27(19): 6625-6634. [14] YUAN X H, CHEN W, LU Z A, et al. Shrinkage compensation of alkali-activated slag concrete and microstructural analysis[J]. Construction and Building Materials, 2014, 66: 422-428. [15] LEE N K, KOH K T, KIM M O, et al. Physicochemical changes caused by reactive MgO in alkali-activated fly ash/slag blends under accelerated carbonation[J]. Ceramics International, 2017, 43(15): 12490-12496. [16] ISMAIL I, BERNAL S A, PROVIS J L, et al. Drying-induced changes in the structure of alkali-activated pastes[J]. Journal of Materials Science, 2013, 48(9): 3566-3577. [17] CHANG P H, CHANG Y P, CHEN S Y, et al. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011, 4(12): 1844-1851. [18] MO L W, PANESAR D K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO[J]. Cement and Concrete Research, 2012, 42(6): 769-777. [19] SHI Z G, SHI C J, WAN S, et al. Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars[J]. Cement and Concrete Research, 2018, 113: 55-64. [20] JIN F, AL-TABBAA A. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature[J]. Thermochimica Acta, 2013, 566: 162-168. [21] TARTAGLIONE G, TABUANI D, CAMINO G. Thermal and morphological characterisation of organically modified sepiolite[J]. Microporous and Mesoporous Materials, 2008, 107(1/2): 161-168. [22] JIN F, GU K, AL-TABBAA A. Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste[J]. Construction and Building Materials, 2014, 51: 395-404. [23] SHA W. Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement[M]//Advances in Building Technology. Amsterdam: Elsevier, 2002: 881-888. [24] DWECK J, FERREIRA DA SILVA P F, BÜCHLER P M, et al. Study by thermogravimetry of the evolution of ettringite phase during type II Portland cement hydration[J]. Journal of Thermal Analysis and Calorimetry, 2002, 69(1): 179-186. [25] LI N, FARZADNIA N, SHI C J. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation[J]. Cement and Concrete Research, 2017, 100: 214-226. [26] SAMTANI M, DOLLIMORE D, ALEXANDER K S. Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters[J]. Thermochimica Acta, 2002, 392/393: 135-145. [27] 牟善彬,孙振亚,苏小萍.高游离氧化钙水泥的显微结构与膨胀机理研究[J].武汉理工大学学报,2001,23(11):27-29. MU S B, SUN Z Y, SU X P. A study on the microstructure and expanding mechanism of highly free-calcium oxide cements[J]. Journal of Wuhan University of Technology, 2001, 23(11): 27-29 (in Chinese). |