[1] LI V C. On engineered cementitious composites (ECC)[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 215-230. [2] 江世永,龚宏伟,姚未来,等.ECC材料力学性能与本构关系研究进展[J].材料导报,2018,32(23):4192-4204. JIANG S Y, GONG H W, YAO W L, et al. A survey on mechanical behavior and constitutive model of engineered cementitious composite[J]. Materials Review, 2018, 32(23): 4192-4204 (in Chinese). [3] 徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45-60. XU S L, LI H D. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6): 45-60 (in Chinese). [4] KUNIEDA M, ROKUGO K. Recent progress on HPFRCC in Japan required performance and applications[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 19-33. [5] WEIMANN M B, LI V C. Hygral behavior of engineered cementitious composites (ECC)[J]. Restoration of Buildings & Monuments, 2003, 9(5): 513-534. [6] 田 婷,张学杰,范璐璐.“可弯曲”的混凝土技术与应用[J].建设科技,2020(18):72-74. TIAN T, ZHANG X J, FAN L L. “Bendable” concrete technology and application[J]. Construction Science and Technology, 2020(18): 72-74 (in Chinese). [7] ZHANG J, MAALEJ M, QUEK S T. Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact[J]. Journal of Materials in Civil Engineering, 2007, 19(10): 855-863. [8] 吴中伟.纤维增强:水泥基材料的未来[J].混凝土与水泥制品,1999(1):5-6 WU Z W. Fiber reinforced: future of cement-based materials [J]. Chinal Concrete and Cement Products, 1999(1): 5-6 (in Chinese) [9] 陈 茜,伍勇华.纤维增强型水泥基复合材料的理论发展及应用分析[J].混凝土与水泥制品,2011(11):39-43. CHEN Q, WU Y H. Theory development and application analysis on fiber reinforced cementitious composites[J]. China Concrete and Cement Products, 2011(11): 39-43 (in Chinese). [10] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. [11] LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites[J]. Materials and Structures, 1995, 28(10): 586-595. [12] 曹明莉,许 玲,张 聪.高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J].硅酸盐学报,2015,43(5):632-642. CAO M L, XU L, ZHANG C. Review on micromechanical design, performance and development tendency of engineered cementitious composite[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 632-642 (in Chinese). [13] LI V C, WANG S, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492. [14] MAALEJ M, ZHANG J, QUEK S T, et al. High-velocity impact resistance of hybrid-fiber engineered cementitious composites[C]//Proceedings of 5th International Conference for Fracture Mechanics of Concrete and Concrete Structures, Colorado: FraMCoS-5, 2004: 1051-1058. [15] MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact[J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143-152. [16] LI V C, MAALEJ M. Toughening in cement based composites. Part Ⅱ: fiber reinforced cementitious composites[J]. Cement and Concrete Composites, 1996, 18(4): 239-249. [17] ZHOU J, QIAN S Z, YE G, et al. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence[J]. Cement and Concrete Composites, 2012, 34(3): 342-348. [18] KANDA T, LI V C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix[J]. Journal of Materials in Civil Engineering, 1998, 10(1): 5-13. [19] KLEPACZKO J R, BRARA A. An experimental method for dynamic tensile testing of concrete by spalling[J]. International Journal of Impact Engineering, 2001, 25(4): 387-409. [20] KAI M F, XIAO Y, SHUAI X L, et al. Compressive behavior of engineered cementitious composites under high strain-rate loading[J]. Journal of Materials in Civil Engineering, 2017, 29(4): 04016254. [21] TAN K H, YANG E H, KANG S B, et al. Mechanical behaviour of engineered cementitious composites under quasi-static and high strain rate applications[J]. Advanced Materials Research, 2015, 1129: 10-18. [22] CHEN Z T, YANG Y Z, YAO Y. Impact properties of engineered cementitious composites with high volume fly ash using SHPB test[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2012, 27(3): 590-596. [23] MECHTCHERINE V, MILLON O, BUTLER M, et al. Mechanical behavior of SHCC under Impact loading high performance fiber reinforced cement composites[J]. RILEM Bookseries, 2012: 2: 297-304. [24] MECHTCHERINE V, DE ANDRADE S F, BUTLER M, et al. Behaviour of strain-hardening cement-based composites under high strain rates[J]. Journal of Advanced Concrete Technology, 2011, 9(1): 51-62. [25] CUROSU I, MECHTCHERINE V, FORNI D, et al. Performance of various strain-hardening cement-based composites (SHCC) subject to uniaxial impact tensile loading[J]. Cement and Concrete Research, 2017, 102: 16-28. [26] CUROSU I, MECHTCHERINE V, MILLON O. Effect of fiber properties and matrix composition on the tensile behavior of strain-hardening cement-based composites (SHCCs) subject to impact loading[J]. Cement and Concrete Research, 2016, 82: 23-35. [27] HERAVI A A, CUROSU I, MECHTCHERINE V. A gravity-driven split Hopkinson tension bar for investigating quasi-ductile and strain-hardening cement-based composites under tensile impact loading[J]. Cement and Concrete Composites, 2020, 105: 103430. [28] YANG E H, LI V C. Rate dependence in engineered cementitious composites[C]//Proceedings of International RILEM Workshop on HPFRCC in Structural Applications, Honolulu, Hawaii, USA: RILEM Publications S.A.R.L, 2005: 83-92. [29] DOUGLAS K S, BILLINGTON S L. Rate dependence in high-performance fiber reinforced cement-based composites for seismic applications[C]//Proceedings of International RILEM Workshop on HPFRCC in Structural Applications, Honolulu, Hawaii, USA: RILEM Publications S.A.R.L, 2005: 17-25. [30] MECHTCHERINE V, DE SILVA F D A, MÜLLER S, et al. Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers[J]. Cement and Concrete Research, 2012, 42(11): 1417-1427. [31] MECHTCHERINE V, MILLON O, BUTLER M, et al. Mechanical behaviour of strain hardening cement-based composites under impact loading[J]. Cement and Concrete Composites, 2011, 33(1): 1-11. [32] YANG E H, LI V C. Strain-rate effects on the tensile behavior of strain-hardening cementitious composites[J]. Construction and Building Materials, 2014, 52: 96-104. [33] 苗朝阳,李秀地,杨 森,等.温压弹爆炸效应与防护技术研究现状[J].兵器装备工程学报,2016,37(4):155-159. MIAO C Y, LI X D, YANG S, et al. Research status of explosion effect and protection technology of thermobaric bomb[J]. Journal of Ordnance Equipment Engineering, 2016, 37(4): 155-159 (in Chinese). [34] ALI M A E M, SOLIMAN A M, NEHDI M L. Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading[J]. Materials & Design, 2017, 117: 139-149. [35] MAGALHES M S, FILHO R D T, FAIRBAIN E M R. Physical and mechanical properties of strain-hardening cement-based composites (SHCC) after exposure to elevated temperatures[M]//Advances in Cement-Based Materials. CRC Press, 2009: 217-222. [36] 齐宝欣,李 茉,刘 东,等.基于压电主动传感技术的高温后PVA-ECC梁冲击损伤监测研究[J].建筑科学与工程学报,2018,35(5):233-240. QI B X, LI M, LIU D, et al. Research on impact damage monitoring of PVA-ECC beam after high temperature based on piezoelectric active sensing technology[J]. Journal of Architecture and Civil Engineering, 2018, 35(5): 233-240 (in Chinese). [37] 李秀地,孙建虎,王起帆.高等防护工程[M].北京:国防工业出版社,2016:78-82. LI X D, SUN J H, WANG Q F. Advanced protection engineering[M]. Beijing: National Defense Industry Press, 2016: 78-82 (in Chinese). [38] MAALEJ M, LIN V W J, NGUYEN M P, et al. Engineered cementitious composites for effective strengthening of unreinforced masonry walls[J]. Engineering Structures, 2010, 32(8): 2432-2439. [39] 李庆华,徐世烺.超高韧性水泥基复合材料基本性能和结构应用研究进展[J].工程力学,2009,26(s2):23-67. LI Q H, XU S L. Performance and application of ultra high toughness cementitious composite: a review[J]. Engineering Mechanics, 2009, 26(s2): 23-67 (in Chinese). [40] 寇佳亮,王华丞.高延性混凝土板抗落石冲击性能试验研究[J].振动与冲击,2020,39(11):239-247+279. KOU J L, WANG H C. Experimental study on rockfall impact resistance of high ductile concrete slabs[J]. Journal of Vibration and Shock, 2020, 39(11): 239-247+279 (in Chinese). [41] ALMANSA E M, CNOVAS M F. Behaviour of normal and steel fiber-reinforced concrete under impact of small projectiles[J]. Cement and Concrete Research, 1999, 29(11): 1807-1814. [42] DANCYGIER A N. Rear face damage of normal and high-strength concrete elements caused by hard projectile impact[J]. ACI Structural Journal, 1998, 95(3): 291-304. [43] WANG S S, LE H T N, POH L H, et al. Resistance of high-performance fiber-reinforced cement composites against high-velocity projectile impact[J]. International Journal of Impact Engineering, 2016, 95: 89-104. [44] 戎志丹,孙 伟,张云升,等.超高性能水泥基复合材料的抗爆炸性能[J].爆炸与冲击,2010,30(3):232-238. RONG Z D, SUN W, ZHANG Y S, et al. Characteristics of ultra-high performance cementitious composites under explosion[J]. Explosion and Shock Waves, 2010, 30(3): 232-238 (in Chinese). [45] 徐世烺,李 锐,李庆华,等.超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟[J].工程力学,2020,37(8):123-133+178. XU S L, LI R, LI Q H, et al. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion[J]. Engineering Mechanics, 2020, 37(8): 123-133+178 (in Chinese). [46] ADHIKARY S D, CHANDRA L R, CHRISTIAN A, et al. SHCC-strengthened RC panels under near-field explosions[J]. Construction and Building Materials, 2018, 183: 675-692. [47] HUANG T, ZHANG Y X, YANG C H. Multiscale modelling of multiple-cracking tensile fracture behaviour of engineered cementitious composites[J]. Engineering Fracture Mechanics, 2016, 160: 52-66. [48] KOUTROMANOS I, SHING P B. Numerical study of masonry-infilled RC frames retrofitted with ECC overlays[J]. Journal of Structural Engineering, 2014, 140(7): 04014045. [49] LI J, ZHANG Y X. Evolution and calibration of a numerical model for modelling of hybrid-fibre ECC panels under high-velocity impact[J]. Composite Structures, 2011, 93(11): 2714-2722. [50] 李庆华,赵 昕,徐世烺.纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究[J].工程力学,2017,34(2):85-93. LI Q H, ZHAO X, XU S L. Impact compression properties of nano-SiO2 modified ultra high toughness cementitious composites using a split Hopkinson pressure bar[J]. Engineering Mechanics, 2017, 34(2): 85-93 (in Chinese). |