硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (8): 2471-2484.
• 特邀综述 • 下一篇
钱国权1,2, 唐国武1, 吴敏波1, 钱奇1, 陈东丹1, 杨中民1
收稿日期:
2021-06-21
修回日期:
2021-07-12
出版日期:
2021-08-15
发布日期:
2021-09-02
通讯作者:
杨中民,博士,教授。E-mail:yangzm@scut.edu.cn
作者简介:
钱国权(1992—),男,博士,讲师。主要从事稀土掺杂激光玻璃与光纤激光的研究。E-mail:guoquanqian@163.com,云南警官学院讲师。2020年毕业于华南理工大学,获工学博士学位。读博期间,主要从事激光玻璃性能计算、特种光纤制备以及光纤激光实验等研究工作。以第一作者或共同第一作者在国内外学术期刊发表论文10篇,其中SCI收录7篇,EI收录3篇;申请国家发明专利8项,获授权发明专利6项。杨中民,男,1971年生,华南理工大学教授,博导。《硅酸盐通报》副主编。主要从事玻璃光纤、光纤激光与光纤传感等研究工作。获国家杰出青年基金、省部级一等奖4项、国家技术发明二等奖2项、何梁何利科技创新奖、南粤百杰以及南粤创新奖等。
基金资助:
QIAN Guoquan1,2, TANG Guowu1, WU Minbo1, QIAN Qi1, CHEN Dongdan1, YANG Zhongmin1
Received:
2021-06-21
Revised:
2021-07-12
Online:
2021-08-15
Published:
2021-09-02
摘要: 2 μm波段光纤激光可被广泛应用于激光雷达、生物医疗、环境监测以及光谱学等领域,而Tm3+掺杂玻璃光纤是2 μm波段光纤激光重要的增益介质。本文从Tm3+掺杂玻璃的发光特性出发,介绍了Tm3+掺杂玻璃光纤的制备技术,综述了不同玻璃基质材料掺Tm3+光纤的研究进展。最后,指出了制备高性能Tm3+掺杂玻璃光纤需要解决的关键问题,提出了可能的解决方法,并对Tm3+掺杂玻璃光纤发展趋势进行了展望。
中图分类号:
钱国权, 唐国武, 吴敏波, 钱奇, 陈东丹, 杨中民. Tm3+掺杂玻璃光纤研究进展[J]. 硅酸盐通报, 2021, 40(8): 2471-2484.
QIAN Guoquan, TANG Guowu, WU Minbo, QIAN Qi, CHEN Dongdan, YANG Zhongmin. Research Progress of Tm3+-Doped Glass Fibers[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2471-2484.
[1] AUZEL F, MEICHENIN D, POIGNANT H. Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass[J]. Electronics Letters, 1988, 24(15): 909. [2] DE SOUSA D F, ZONETTI L F C, BELL M J V, et al. On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses[J]. Applied Physics Letters, 1999, 74(7): 908-910. [3] ZHONG H Y, CHEN B J, REN G Z, et al. 2.7 μm emission of Nd3+, Er3+ codoped tellurite glass[J]. Journal of Applied Physics, 2009, 106(8): 083114. [4] 郭海涛,陆 敏,陶光明,等.中红外发光稀土掺杂硫系玻璃的研究进展[J].硅酸盐学报,2009,37(12):2150-2156. GUO H T, LU M, TAO G M, et al. Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence[J]. Journal of the Chinese Ceramic Society, 2009, 37(12): 2150-2156 (in Chinese). [5] 康世亮,董国平,邱建荣.Er3+掺杂碲酸盐微晶玻璃光纤的中红外荧光特性[J].硅酸盐学报,2018,46(10):1321-1326. KANG S L, DONG G P, QIU J R. Er3+-doped tellurite glass ceramic fiber with enhanced mid-infrared emission[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1321-1326 (in Chinese). [6] JACKSON S D. Towards high-power mid-infrared emission from a fibrelaser[J]. Nature Photonics, 2012, 6(7): 423-431. [7] 张飞飞.掺稀土2~3 μm中红外氧氟玻璃发光特性研究[D].广州:华南理工大学,2014. ZHANG F F. The study on 2~3 μm mid-infrared luminescence properties of rare-earth doped oxyfluoride glass[D]. Guangzhou: South China University of Technology, 2014 (in Chinese). [8] TANG G W, WEN X, QIAN Q, et al. Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser[J]. Journal of Alloys and Compounds, 2016, 664: 19-24. [9] LU X S, LAI Z Q, ZHANG R N, et al. Ultrabroadband mid-infrared emission from Cr2+-doped infrared transparent chalcogenide glass ceramics embedded with thermally grown ZnS nanorods[J]. Journal of the European Ceramic Society, 2019, 39(11): 3373-3379. [10] 温 馨.2 μm波段钡镓锗酸盐玻璃单模光纤的研究[D].广州:华南理工大学,2015. WEN X. Study on 2 μm barium gallo-germanate glass single-mode optical fiber[D]. Guangzhou: South China University of Technology, 2015 (in Chinese). [11] 袁 健.2.0 μm波段稀土掺杂碲酸盐玻璃光纤及其光谱和激光实验研究[D].广州:华南理工大学,2015. YUAN J. Rare earth doped tellurite glass fibers and their spectroscopic properties for the lasers operating at 2.0 μm region and the laser experimental research[D]. Guangzhou: South China University of Technology, 2015 (in Chinese). [12] SPARKS J R, ARO S C, HE R R, et al. Chromium doped zinc selenide optical fiber lasers[J]. Optical Materials Express, 2020, 10(8): 1843-1852. [13] QIAN G Q, TANG G W, SHI Z G, et al. Efficient 2 μm emission in Er3+/Ho3+ co-doped lead silicate glasses under different excitations[J]. Optical Materials, 2018, 82: 147-153. [14] LANCASTER D G, JACKSON S D. In-fiber resonantly pumped Q-switched holmium fiber laser[J]. Optics Letters, 2009, 34(21): 3412-3414. [15] AGGER S, POVLSEN J H, VARMING P. Single-frequency thulium-doped distributed-feedback fiberlaser[J]. Optics Letters, 2004, 29(13): 1503-1505. [16] WEN X, TANG G W, WANG J W, et al. Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser[J]. Optics Express, 2015, 23(6): 7722-7731. [17] WANG Q, GENG J, LUO T, et al. Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J].Optics Letters, 2009, 34(23): 3616-3618. [18] KUAN P W, LI K F, ZHANG L, et al. All-fiber passively Q-switched laser based on Tm3+-doped tellurite fiber[J]. IEEE Photonics Technology Letters, 2015, 27(7): 689-692. [19] CHENG H H, WANG W L, ZHOU Y, et al. High-repetition-rate ultrafast fiber lasers[J]. Optics Express, 2018, 26(13): 16411. [20] KUAN P W, LI K F, ZHANG L, et al. 0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1525-1528. [21] WEN X, TANG G W, YANG Q, et al. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser[J]. Scientific Reports, 2016, 6: 20344. [22] WANG X,LOU F G, WANG S K, et al. Spectroscopic properties of Tm3+/Al3+ co-doped sol-gel silica glass[J]. Optical Materials, 2015, 42: 287-292. [23] YUAN J, WANG W C, CHEN D D, et al. Enhanced 1.8 μm emission in Yb3+/Tm3+ codoped tungsten tellurite glasses for a diode-pump 2.0 μm laser[J]. Journal of Non-Crystalline Solids, 2014, 402: 223-230. [24] 姜中宏.新型光功能玻璃[M].北京:化学工业出版社,2008. JIANG Z H. New optical functional glass[M]. Beijing: Chemical Industry Press, 2008 (in Chinese). [25] ZHANG W, LIU J T, ZHOU G Y, et al. Optical properties of the Yb/Er co-doped silica glass prepared by laser sintering technology[J]. Optical Materials Express, 2017, 7(5): 1708-1715. [26] YANG Y,CHU Y B, CHEN Z R, et al. Blue upconversion in Yb3+/Tm3+ co-doped silica fiber based on glass phase-separation technology[J]. Applied Physics A, 2018, 124(2): 1-6. [27] FU S J, SHI W, FENG Y, et al. Review of recent progress on single-frequency fiber lasers[J]. Journal of the Optical Society of America B, 2017, 34(3): A49-A62. [28] WANG W C, YANG X, WIEDUWILT T, et al. Fluoride-sulfophosphate/silica hybrid fiber as a platform for optically active materials[J]. Frontiers in Materials, 2019, 6: 148. [29] WANG W C, ZHOU B, XU S H, et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 2019, 101: 90-171. [30] 唐国武.复合玻璃光纤的研究[D].广州:华南理工大学,2017. TANG G W. Study on multimaterial optical fibers[D]. Guangzhou: South China University of Technology, 2017 (in Chinese). [31] HANNA D C, PERCIVAL R M, PERRY I R, et al. Continuous-wave oscillation of a monomode thulium-doped silica fiber laser[J]. Electronics Letters, 1988, 24: 1222-1224. [32] JACKSON S D, KING T A. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Optics Letters, 1998, 23(18): 1462-1464. [33] TSANG Y H, COLEMAN D J, KING T A. High power 1.9 μm Tm3+-silica fibre laser pumped at 1.09 μm by a Yb3+-silica fibre laser[J]. Optics Communications, 2004, 231(1/2/3/4/5/6): 357-364. [34] FRITH G, LANCASTER D G, JACKSON S D. 85 W Tm3+-doped silica fibre laser[J]. Electronics Letters, 2005, 41(12): 687. [35] VOO N Y, SAHU J K, IBSEN M. 345-mW 1 836-nm single-frequency DFB fiber laser MOPA[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2550-2552. [36] MELESHKEVICH M, PLATONOV N, GAPONTSEV D, et al. 415 W single-mode CW thulium fiber laser in all-fiber format[C]//2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. June 17-22, 2007, Munich, Germany. IEEE, 2007: 1. [37] GAPONTSEV D, PLATONOV N, MELESHKEVICH M, et al. 20 W single-frequency fiber laser operating at 1.93 μm[C]//Conference on Lasers & Electro-optics. IEEE, 2007. [38] MOULTON P F, RINES G A, SLOBODTCHIKOV E V, et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92. [39] FU S J, SHI W, LIN J C, et al. Single-frequency fiber laser at 1 950 nm based on thulium-doped silica fiber[J]. Optics Letters, 2015, 40(22): 5283. [40] FU S J, SHI W, SHENG Q, et al. Compact hundred-mW2 μm single-frequency thulium-doped silica fiber laser[J]. IEEE Photonics Technology Letters, 2017, 29(11): 853-856. [41] LU Y, FENG G F, WANG M, et al. Tm3+-doped silica-glass fiber for ~2 μm fiber laser[J]. Applied Optics, 2019, 58(7): 1747-1751. [42] LIU J T, ZHAO N, CHEN Y, et al. Tm/Al co-doped silica glass prepared by laser additive manufacturing technology for 2 μm photonic crystal fiber laser[J]. Journal of Lightwave Technology, 2020, 38(6): 1486-1491. [43] CHU Y B, YANG Y, LIU Y G, et al. 1.8 μm fluorescence characteristics of Tm3+ doped silica glasses and fiber prepared by the glass phase-separation technology[J]. Journal of Non-Crystalline Solids, 2020, 529: 119704. [44] ESTEROWITZ L, ALLEN R, AGGARWAL I. Pulsed laser emission at 2.3 μm in a thulium-doped fluorozirconatefibre[J]. Electronics Letters, 1988, 24(17): 1104. [45] ALLEN R, ESTEROWITZ L. CW diode pumped 2.3 μm fiber laser[J]. Applied Physics Letters, 1989, 55(8): 721-722. [46] ALLAIN J Y, MONERIE M, POIGNANT H. Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre[J]. Electronics Letters, 1989, 25(24): 1660. [47] PERCIVAL R M, SZEBESTA D, SELTZER C P, et al. A 1.6 μm pumped 1.9 μm thulium-doped fluoride fiber laser and amplifier of very high efficiency[J]. IEEE Journal of Quantum Electronics, 1995, 31(3): 489-493. [48] EICHHORN M, JACKSON S D. Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers[J]. Applied Physics B, 2008, 90(1): 35-41. [49] EL-AGMY R M, AL-HOSINY N M. 2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+∶ZBLAN fibre lasers[J]. Electronics Letters, 2010, 46(13): 936. [50] JIA C L, SHASTRI B J, ABDUKERIM N, et al. Passively synchronized Q-switched and mode-locked dual-band Tm3+: ZBLAN fiber lasers using a common graphene saturable absorber[J]. Scientific Reports, 2016, 6: 36071. [51] 龚凯蒂.掺铥硅酸盐玻璃的光谱特性及光纤制备研究[D].广州:华南理工大学,2015. GONG K D. The spectral properties of thulium doped silicate glasses and investigation of fiber preparation[D]. Guangzhou: South China University of Technology, 2015 (in Chinese). [52] ZHANG Z, SHEN D Y, BOYLAND A J, et al. High-power Tm-doped fiber distributed-feedback laser at 1 943 nm[J]. Optics Letters, 2008, 33(18): 2059-2061. [53] GENG J H, WANG Q, LUO T, et al. Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber[J]. Optics Letters, 2009, 34(22): 3493-3495. [54] ZHANG Z, BOYLAND A J, SAHU J K, et al. High-power single-frequency thulium-doped fiber DBR laser at 1 943 nm[J]. IEEE Photonics Technology Letters, 2011, 23(7): 417-419. [55] LIU X Q, WANG X, WANG L F, et al. Realization of 2 μm laser output in Tm3+-doped lead silicate double cladding fiber[J]. Materials Letters, 2014, 125: 12-14. [56] LEE Y W, LING H Y, LIN Y H, et al. Heavily Tm3+-doped silicate fiber with high gain per unit length[J]. Optical Materials Express, 2015, 5(3): 549-557. [57] TANG G W, ZHU T T, LIU W W, et al. Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications[J]. Optical Materials Express, 2016, 6(6): 2147-2157. [58] TANG G W, ZHU T T, LIN W, et al. Single-mode large mode-field-area Tm3+-doped lead-silicate glass photonic crystal fibers[J]. IEEE Photonics Technology Letters, 2017, 29(5): 450-453. [59] 朱婷婷.掺铥铅硅酸盐玻璃的光谱特性及光子晶体光纤的研究[D].广州:华南理工大学,2016. ZHU T T. The spectral properties of thulium doped lead silicate glasses and investigation of photonic crystal fiber[D]. Guangzhou: South China University of Technology, 2016 (in Chinese). [60] CHEN D D, LIU Y H, ZHANG Q Y, et al. Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers[J]. Materials Chemistry and Physics, 2005, 90(1): 78-82. [61] CHEN D D, ZHANG Q Y, LIU Y H, et al. Broadband amplified spontaneous emission from Er3+-doped single-mode tellurite fibre[J]. Chinese Physics, 2006, 15(12): 2902-2905. [62] 陈东丹.掺稀土碲酸盐玻璃与光纤应用基础问题研究[D].广州:华南理工大学,2010. CHEN D D. Rare-earth doped tellurite glasses and tellurite glass fibers[D]. Guangzhou: South China University of Technology, 2010 (in Chinese). [63] RICHARDS B D O, TSANG Y H, BINKS D J, et al. Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser[C]//Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III. Florence, Italy. SPIE, 2007: 675005. [64] TSANG Y, RICHARDS B, BINKS D, et al. Tm3+/Ho3+ codoped tellurite fiber laser[J]. Optics Letters, 2008, 33(11): 1282-1284. [65] RICHARDS B, TSANG Y, BINKS D, et al. ~2 μm Tm3+/Yb3+-doped tellurite fibre laser[J]. Journal of Materials Science: Materials in Electronics, 2009, 20(1): 317-320. [66] LI K F, ZHANG G, HU L L. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber[J]. Optics Letters, 2010, 35(24): 4136. [67] WU J F, YAO Z D, ZONG J, et al. Highly efficient high-power thulium-doped germanate glass fiber laser[J]. Optics Letters, 2007, 32(6): 638-640. [68] GENG J H, WU J F, JIANG S B, et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm[J]. Optics Letters, 2007, 32(4): 355-357. [69] HE X, XU S H, LI C, et al. 1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber[J]. Optics Express, 2013, 21(18): 20800-20805. [70] TANG G W, WEN X, HUANG K M, et al. Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser[J]. Applied Physics Express, 2018, 11(3): 032701. [71] GUAN X C, YANG C S, QIAO T, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1 950 nm[J]. Optics Express, 2018, 26(6): 6817-6825. [72] CHENG H H, LIN W, LUO Z Q, et al. Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-6. [73] SLIMEN F B, CHEN S X, LOUSTEAU J, et al. Highly efficient -Tm3+ doped germanate large mode area single mode fiber laser[J]. Optical Materials Express, 2019, 9(10): 4115-4125. [74] SORIN F, ABOURADDY A, ORF N, et al. Multimaterial photodetecting fibers: a geometric and structural study[J]. Advanced Materials, 2007, 19(22): 3872-3877. [75] TAO G M, STOLYAROV A M, ABOURADDY A F. Multimaterial fibers[J]. International Journal of Applied Glass Science, 2012, 3(4): 349-368. [76] ALEXANDER SCHMIDT M, ARGYROS A, SORIN F. Hybrid optical fibers-an innovative platform for in-fiber photonicdevices[J]. Advanced Optical Materials, 2016, 4(1): 13-36. [77] ZHANG Y M, WANG W W, LI J, et al. Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser[J]. Journal of the American Ceramic Society, 2019, 102(5): 2551-2557. [78] WANG Y F, ZHANG Y M, CAO J K, et al. 915 nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @ silica glass hybrid fiber for the pure blue fiber laser[J]. Optics Letters, 2019, 44(9): 2153-2156. [79] XIE Y Y, LIU Z J, CONG Z H, et al. All-fiber-integrated Yb∶YAG-derived silica fiber laser generating 6 W output power[J]. Optics Express, 2019, 27(3): 3791-3798. [80] LIU Z J, XIE Y Y, CONG Z H, et al. 110 mW single-frequency Yb∶YAG crystal-derived silica fiber laser at 1 064 nm[J]. Optics Letters, 2019, 44(17): 4307-4310. [81] TANG G W, FANG Z J, QIAN Q, et al. Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers[J]. Journal of Non-Crystalline Solids, 2016, 452: 82-86. [82] BALLATO J, HAWKINS T, FOY P, et al. On the fabrication of all-glass optical fibers fromcrystals[J]. Journal of Applied Physics, 2009, 105(5): 053110. [83] DRAGIC P, LAW P C, BALLATO J, et al. Brillouin spectroscopy of YAG-derived optical fibers[J].Optics Express, 2010, 18(10): 10055. [84] DRAGIC P, HAWKINS T, FOY P, et al. Sapphire-derived all-glass optical fibers[J]. Nature Photonics, 2012, 6(9): 627-633. [85] ZHANG Y M, QIAN G Q, XIAO X S, et al. The preparation of yttrium aluminosilicate (YAS) glass fiber with heavy doping of Tm3+ from polycrystalline YAG ceramics[J]. Journal of the American Ceramic Society, 2018, 101(10): 4627-4633. [86] TANG G W, QIAN G Q, LIN W, et al. Broadband 2 μm amplified spontaneous emission of Ho/Cr/Tm∶YAG crystal derived all-glass fibers for mode-locked fiber laser applications[J]. Optics Letters, 2019, 44(13): 3290-3293. [87] QIAN G Q, WANG W L, TANG G W, et al. Tm∶YAG ceramic derived multimaterial fiber with high gain per unit length for 2 μm laser applications[J]. Optics Letters, 2020, 45(5): 1047-1050. [88] SPARKS J R, HE R R, HEALY N, et al. Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductors[J]. Advanced Functional Materials, 2013, 23(13): 1647-1654. [89] SPARKS J R, HE R R, HEALY N, et al. Zinc selenide optical fibers[J]. Advanced Materials, 2011, 23(14): 1647-1651. [90] XU S H, YANG Z M, ZHANG W N, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser[J]. Optics Letters, 2011, 36(18): 3708-3710. [91] 钱 奇,杨中民.Yb3+掺杂磷酸盐玻璃光纤与1.06 μm单频激光器的研制[J].光学学报,2010,30(7):1904-1909. QIAN Q, YANG Z M. Yb3+-doped phosphate glass fiber and 1.06 μm single-frequency fiber laser[J]. Acta Optica Sinica, 2010, 30(7): 1904-1909 (in Chinese). [92] 干福熹.硅酸盐玻璃物理性质新的计算体系[J].硅酸盐学报,1962(2):55-76. GAN F X. A new calculation system for the physical properties of silicate glass[J]. Journal of the Chinese Ceramic Society, 1962(2): 55-76 (in Chinese). [93] HUGGINS M L, SUN K H. Calculation of density and optical constants of a glass from its composition in weightpercentage[J]. Journal of the American Ceramic Society, 1943, 26(1): 4-11. [94] 周艳艳.玻璃化学[M].北京:化学工业出版社,2016. ZHOU Y.Glass chemistry[M]. Beijing: Chemical Industry Press, 2016 (in Chinese). [95] PEDONE A, MALAVASI G, CORMACK A N, et al. Insight into elastic properties of binary alkali silicate glasses; prediction and interpretation through atomistic simulationtechniques[J]. Chemistry of Materials, 2007, 19(13): 3144-3154. [96] SMEDSKJAER M M, MAURO J C, YUE Y Z. Prediction of glass hardness using temperature-dependent constraint theory[J]. Physical Review Letters, 2010, 105(11): 115503. [97] ZENG H D, JIANG Q, LIU Z, et al. Unique sodium phosphosilicate glasses designed through extended topological constraint theory[J]. The Journal of Physical Chemistry B, 2014, 118(19): 5177-5183. [98] REN M G, CHENG J Y, JACCANI S P, et al. Composition-structure-property relationships in alkali aluminosilicate glasses: a combined experimental-computational approach towards designing functional glasses[J]. Journal of Non-Crystalline Solids, 2019, 505: 144-153. [99] 曾惠丹,邓逸凡,李 响,等.基于拓扑结构束缚理论的玻璃性质计算方法[J].硅酸盐学报,2018,46(1):1-10. ZENG H D, DENG Y F, LI X, et al. Calculations method for glass properties based on topological constraint theory[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 1-10 (in Chinese). [100] BUTLER K T, DAVIES D W, CARTWRIGHT H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555. [101] MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the design of functional glasses through modeling[J].Chemistry of Materials, 2016, 28(12): 4267-4277. [102] CASSAR D R, DE CARVALHO A C P L F, ZANOTTO E D. Predicting glass transition temperatures using neural networks[J]. Acta Materialia, 2018, 159: 249-256. [103] LIU H, FU Z P, YANG K, et al. Machine learning for glass science and engineering: a review[J]. Journal of Non-Crystalline Solids, 2021, 557: 119419. [104] 钱国权,唐国武,钱 奇,等.玻璃基因工程研究[J].中国科学:技术科学,2020,50(5):582-592. QIAN G Q, TANG G W, QIAN Q, et al. Glass genetic engineering[J]. Scientia Sinica (Technologica), 2020, 50(5): 582-592 (in Chinese). [105] WEBER M J. Handbook of optical materials[M]. London: CRC Press, 2018. [106] QIAN G Q, TANG G W, QIAN Q, et al. Quantitative prediction of the structure and luminescence properties of Nd3+ doped borate laser glasses[J]. Journal of the American Ceramic Society, 2019, 102(12): 7288-7298. [107] QIAN G Q, TANG G W, QIAN Q, et al. Quantitative prediction of the glass-forming region and luminescence properties in Tm3+-doped germanate laser glasses[J]. Journal of the American Ceramic Society, 2020, 103(8): 4203-4213. [108] 钱国权.激光玻璃性能计算与实验研究[D].广州:华南理工大学,2020. QIAN G Q. Performance calculation and experimental research of laser glasses[D]. Guangzhou: South China University of Technology, 2020 (in Chinese). [109] TARELHO L V G, GOMES L, RANIERI I M. Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-dopedcrystals[J]. Physical Review B, 1997, 56(22): 14344-14351. [110] YANG G F, ZHANG Q Y, ZHAO S Y, et al. Dehydration of Er3+-doped phosphate glasses using reactive agent bubble flow method[J]. Journal of Non-Crystalline Solids, 2006, 352(8): 827-831. [111] FENG X, TANABE S, HANADA T. Hydroxyl groups in erbium-doped germanotelluriteglasses[J]. Journal of Non-Crystalline Solids, 2001, 281(1/2/3): 48-54. [112] EBENDORFF-HEIDEPRIEM H, SEEBER W, EHRT D. Dehydration of phosphateglasses[J]. Journal of Non-Crystalline Solids, 1993, 163(1): 74-80. [113] 王建文.掺铥钡镓锗酸盐玻璃光纤的研制[D].广州:华南理工大学,2011. WANG J W. Fabrication of Tm3+-doped barium gallo-germanate glass fiber[D]. Guangzhou: South China University of Technology, 2011 (in Chinese). [114] WANG X, LI K F, YU C L, et al. Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses[J]. Journal of Luminescence, 2014, 147: 341-345. [115] XU S H, YANG Z M, LIU T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 2010, 18(2): 1249-1254. [116] TU L, TANG G W, QIAN Q, et al. Controllable structural tailoring for enhanced ~2 μm emission in heavily Tm3+-doped germanate glasses[J]. Optics Letters, 2021, 46(2): 310-313. [117] LI H X, LOUSTEAU J, MACPHERSON W N, et al. Thermal sensitivity of tellurite and germanate optical fibers[J]. Optics Express, 2007, 15(14): 8857-8863. [118] 杨中民,杨昌盛,徐善辉.不同组分玻璃光纤的熔接方法:CN200710032275.3[P].2007-12-07. YANG Z M, YANG C S, XU S H. Fusion splicing method of different component glass optical fibers: CN200710032275.3[P]. 2007-12-07 (in Chinese). [119] JIANG S B, WANG J F. Method of fusion splicing silica fiber with low-temperature multi-component glass fiber: US6705771[P]. 2004-03-16. [120] WANG J, LI W. Method of angle fusion splicing silica fiber with low-temperature non-silica fiber: US20030152342[P]. 2003-08-14. |
[1] | 钱敏, 邹兆松, 唐景平, 蒋亚丝, 徐永春, 胡丽丽. 用于低损耗特种玻璃熔炼的高纯致密锆英石的研制[J]. 硅酸盐通报, 2020, 39(12): 4003-4009. |
[2] | 胡丽丽;姜中宏. 磷酸盐激光玻璃研究进展[J]. 硅酸盐通报, 2005, 24(5): 125-129. |
[3] | 陈树彬;张俊洲;毛涵芬. 磷酸盐激光玻璃除铂问题的研究[J]. 硅酸盐通报, 1999, 18(6): 79-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||