硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (7): 2348-2359.
阿拉腾沙嘎, 陈冠宏, 陈星
收稿日期:
2021-02-09
修回日期:
2021-04-04
出版日期:
2021-07-15
发布日期:
2021-08-04
作者简介:
阿拉腾沙嘎(1986—),男,博士,副研究员。主要从事仿生结构多孔陶瓷及复合材料的研究工作。E-mail:altsg@jlju.edu.cn
基金资助:
ALATENG Shaga, CHEN Guanhong, CHEN Xing
Received:
2021-02-09
Revised:
2021-04-04
Online:
2021-07-15
Published:
2021-08-04
摘要: 随着科技的迅速发展,对材料的性能提出了更高的要求,迫切需要开发新型轻质高性能结构材料,即低密度、高刚度、高强度和高韧性等特点集于一身。生物材料经过数亿年的进化,形成了与环境和功能需求相适应的精细复杂结构,如贝壳珍珠层的“砖-泥”结构和螃蟹角质层的螺旋结构,它们均表现出非凡的机械性能和独特的功能特性,这启发了人们对于高性能材料的设计和构筑。目前发展的冷冻铸造法(即冰模板法)是制备仿生材料的一种有效方法,通常在温度梯度作用下定向凝固水基陶瓷浆料,经冷冻干燥后可获得具有精细结构的多孔陶瓷材料,随后对该多孔陶瓷填充软相-树脂后可获得仿珍珠贝结构陶瓷-树脂复合材料。为了进一步控制材料微观结构,研究人员对冷冻铸造过程施加磁场作用,最终发现材料的结构和性能均发生了明显变化。本文介绍了冷冻铸造法在控制材料微观结构以及制备仿生材料方面取得的一些进展,综述了施加磁场作用对冷冻铸造的影响,总结了施加磁场辅助的冰模板材料微观结构和机械性能变化规律。
中图分类号:
阿拉腾沙嘎, 陈冠宏, 陈星. 磁场作用下冷冻铸造法制备仿生材料研究进展[J]. 硅酸盐通报, 2021, 40(7): 2348-2359.
ALATENG Shaga, CHEN Guanhong, CHEN Xing. Research Progress on Preparation of Biomimetic Materials by Freeze Casting under Magnetic Field[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2348-2359.
[1] PETRINI M, FERRANTE M, SU B. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration[J]. Dental Materials, 2013, 29(4): 375-381. [2] BAI H, WALSH F, GLUDOVATZ B, et al. Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method[J]. Advanced Materials, 2016, 28(1): 50-56. [3] SHEN P, XI J W, FU Y J, et al. Preparation of high-strength Al-Mg-Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 944-950. [4] SHAGA A, SHEN P, GUO R F, et al. Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration[J]. Ceramics International, 2016, 42(8): 9653-9659. [5] GUO R F, LV H C, SHEN P, et al. Lamellar-interpenetrated Al-Si-Mg/Al2O3-ZrO2 composites prepared by freeze casting and pressureless infiltration[J]. Ceramics International, 2017, 43(3): 3292-3297. [6] GUO R F, SHEN P, SUN C, et al. Processing and mechanical properties of lamellar-structured Al-7Si-5Cu/TiC composites[J]. Materials & Design, 2016, 106: 446-453. [7] WANG Y, SHEN P, GUO R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration[J]. Ceramics International, 2017, 43(4): 3831-3838. [8] MORITZ T, RICHTER H J. Ice-mould freeze casting of porous ceramic components[J]. Journal of the European Ceramic Society, 2007, 27(16): 4595-4601. [9] MUNCH E, SAIZ E, TOMSIA A P, et al. Architectural control of freeze-cast ceramics through additives and templating[J]. Journal of the American Ceramic Society, 2009, 92(7): 1534-1539. [10] SOFIE S W, DOGAN F. Freeze casting of aqueous alumina slurries with glycerol[J]. Journal of the American Ceramic Society, 2001, 84(7): 1459-1464. [11] CHINO Y, DUNAND D C. Directionally freeze-cast titanium foam with aligned, elongated pores[J]. Acta Materialia, 2008, 56(1): 105-113. [12] ARAKI K, HALLORAN J W. New freeze-casting technique for ceramics with sublimable vehicles[J]. Journal of the American Ceramic Society, 2004, 87(10): 1859-1863. [13] WEN C E, MABUCHI M, YAMADA Y, et al. Processing of biocompatible porous Ti and Mg[J]. Scripta Materialia, 2001, 45(10): 1147-1153. [14] CLEMMER R. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes[J]. Solid State Ionics, 2004, 166(3/4): 251-259. [15] CLEMMER R M C, CORBIN S F. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes[J]. Solid State Ionics, 2004, 166: 251-259. [16] MILOSHEVSKY G V, JORDAN P C. Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study[J]. Biophysical Journal, 2004, 87(6): 3690-3702. [17] SOFIE S W. Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process[J]. Journal of the American Ceramic Society, 2007, 90(7): 2024-2031. [18] THURN-ALBRECHT T, SCHOTTER J, KASTLE G A, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates[J]. Science, 2000, 290(5499): 2126-2129. [19] LAUNEY M E, RITCHIE R O. On the fracture toughness of advanced materials[J]. Advanced Materials, 2009, 21(20): 2103-2110. [20] LAUNEY M E, MUNCH E, ALSEM D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites[J]. J R Soc Interface, 2010, 7(46): 741-753. [21] LUZ G M, MANO J F. Biomimetic design of materials and biomaterials inspired by the structure of nacre[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1893): 1587-1605. [22] ESPINOSA H D, RIM J E, BARTHELAT F, et al. Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials[J]. Progress in Materials Science, 2009, 54(8): 1059-1100. [23] BARTHELAT F, ESPINOSA H D. An experimental investigation of deformation and fracture of nacre-mother of pearl[J]. Experimental Mechanics, 2007, 47(3): 311-324. [24] BARTHELAT F. Biomimetics for next generation materials[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365(1861): 2907-2919. [25] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials, 2015, 14(1): 23-36. [26] BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Materials, 2014, 13(5): 508-514. [27] LAUNEY M E, MUNCH E, ALSEM D H, et al. Designing highly toughened hybrid composites through nature-inspired hierarchical complexity[J]. Acta Materialia, 2009, 57(10): 2919-2932. [28] MUNCH E, LAUNEY M E, ALSEM D H, et al. Tough, bio-inspired hybrid materials[J]. Science (New York, N Y), 2008, 322(5907): 1516-1520. [29] LIN A Y M, CHEN P Y, MEYERS M A. The growth of nacre in the abalone shell[J]. Acta Biomaterialia, 2008, 4(1): 131-138. [30] MEYERS M A, LIN A Y M, CHEN P Y, et al. Mechanical strength of abalone nacre: role of the soft organic layer[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(1): 76-85. [31] NAGLIERI V, GLUDOVATZ B, TOMSIA A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase[J]. Acta Materialia, 2015, 98: 141-151. [32] ZHAO H W, YUE Y H, GUO L, et al. Cloning nacre’s 3D interlocking skeleton in engineering composites to achieve exceptional mechanical properties[J]. Advanced Materials, 2016, 28(25): 5099-5105. [33] KAMAT S V, HIRTH J P, MEHRABIAN R. Mechanical properties of particulate-reinforced aluminum-matrix composites[J]. Acta Metallurgica, 1989, 37(9): 2395-2402. [34] SCHULTE K, MINOSHIMA K. Damage mechanisms under tensile and fatigue loading of continuous fibre-reinforced metal-matrix composites[J]. Composites, 1993, 24(3): 197-208. [35] OCHIAI S, OSAMURA K. Influences of matrix ductility, interfacial bonding strength, and fiber volume fraction on tensile strength of unidirectional metal matrix composite[J]. Metallurgical Transactions A, 1990, 21(3): 971-977. [36] LOTTERMOSER A. Über das Ausfrieren von Hydrosolen[J]. Berichte der deutschen chemischen Gesellschaft, 1908, 41: 3976-3979. [37] BOBERTAG O, FEIST K, FISCHER H W. Über das Ausfrieren von Hydrosolen[J]. Berichte der deutschen chemischen Gesellschaft, 1908, 41: 3675-3679. [38] MAXWELL W A, GURNICK R S, FRANCISCO A C. Preliminary investigation of the freeze-casting method for forming refractory powders[J]. NACA Research Memorandum. Lewis Flight Propulsion Laboratory, 1954. [39] FUKASAWA T, ANDO M, OHJI T, et al. Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. Journal of the American Ceramic Society, 2001, 84(1): 230-232. [40] FUKASAWA T, DENG Z Y, ANDO M, et al. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. Journal of Materials Science, 2001, 36(10): 2523-2527. [41] DEVILLE S. Freeze-casting of porous ceramics: a review of current achievements and issues[J]. Advanced Engineering Materials, 2008, 10(3): 155-169. [42] LI W L, LU K, WALZ J Y. Freeze casting of porous materials: review of critical factors in microstructure evolution[J]. International Materials Reviews, 2012, 57(1): 37-60. [43] GUTIÉRREZ M C, FERRER M L, DEL MONTE F. Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly[J]. Chemistry of Materials, 2008, 20(3): 634-648. [44] QIAN L, ZHANG H F. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(2): 172-184. [45] DEVILLE S, SAIZ E, TOMSIA A P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(32): 5480-5489. [46] ARAKI K, HALLORAN J W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique[J]. Journal of the American Ceramic Society, 2005, 88(5): 1108-1114. [47] ARAKI K, HALLORAN J W. Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene-camphor eutectic system[J]. Journal of the American Ceramic Society, 2004, 87(11): 2014-2019. [48] GUO R, WANG C G, YANG A K. Piezoelectric properties of the 1-3 type porous lead zirconate titanate ceramics[J]. Journal of the American Ceramic Society, 2011, 94(6): 1794-1799. [49] ZHANG Y, ZHOU K C, BAO Y X, et al. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics[J]. Materials Science and Engineering: C, 2013, 33(1): 340-346. [50] FU Q, RAHAMAN M N, DOGAN F, et al. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2008, 86(2): 514-522. [51] DEVILLE S, VIAZZI C, GUIZARD C. Ice-structuring mechanism for zirconium acetate[J]. Langmuir, 2012, 28(42): 14892-14898. [52] PORTER M M, MCKITTRICK J, MEYERS M A. Biomimetic materials by freeze casting[J]. JOM, 2013, 65(6): 720-727. [53] YANG T Y, LEE J M, YOON S Y, et al. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(5): 1495-1502. [54] LEE J H, CHOI H J, YOON S Y, et al. Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique[J]. Journal of Porous Materials, 2013, 20(1): 219-226. [55] YOUNG Y T, YOUNG K W, YOUNG Y S, et al. Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method[J]. Journal of Physics and Chemistry of Solids, 2010, 71(4): 436-439. [56] HAN J C, HU L Y, ZHANG Y M, et al. Fabrication of ceramics with complex porous structures by the impregnate-freeze-casting process[J]. Journal of the American Ceramic Society, 2009, 92(9): 2165-2167. [57] ZUO K H, ZHANG Y, ZENG Y P, et al. Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite[J]. Ceramics International, 2011, 37(1): 407-410. [58] AKKOUCH A, ZHANG Z, ROUABHIA M. A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration[J]. Journal of Biomedical Materials Research Part A, 2011, 96A(4): 693-704. [59] DEVILLE S, SAIZ E, TOMSIA A P. Ice-templated porous alumina structures[J]. Acta Materialia, 2007, 55(6): 1965-1974. [60] MACCHETTA A, TURNER I G, BOWEN C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method[J]. Acta Biomaterialia, 2009, 5(4): 1319-1327. [61] TANG Z, KOTOV N A, MAGONOV S, et al. Nanostructured artificial nacre[J]. Nature Materials, 2003, 2(6): 413-418. [62] LIU Q, YE F, GAO Y, et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties[J]. Journal of Alloys and Compounds, 2014, 585: 146-153. [63] KIRSCHVINK J L, GOULD J L. Biogenic magnetite as a basis for magnetic field detection in animals[J]. Biosystems, 1981, 13(3): 181-201. [64] KALMIJN A J, GONZALEZ I F, MCCLUNE M C. The physical nature of life[J]. Journal of Physiology-Paris, 2002, 96(5/6): 355-362. [65] WALCOTT C, GREEN R P. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field[J]. Science, 1974, 184(4133): 180-182. [66] GOULD J L, KIRSCHVINK J L, DEFFEYES K S. Bees have magnetic remanence[J]. Science, 1978, 201(4360): 1026-1028. [67] KIRSCHVINK J L, KOBAYASHI-KIRSCHVINK A, WOODFORD B J. Magnetite biomineralization in the human brain[J]. PNAS, 1992, 89(16): 7683-7687. [68] BLAKEMORE R. Magnetotactic bacteria[J]. Science, 1975, 190(4212): 377-379. [69] FRANK M B, NALEWAY S E, HAROUSH T, et al. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting[J]. Materials Science and Engineering: C, 2017, 77: 484-492. [70] PORTER M M, YEH M, STRAWSON J, et al. Magnetic freeze casting inspired by nature[J]. Materials Science and Engineering: A, 2012, 556: 741-750. [71] MASHKOUR M, TAJVIDI M, KIMURA T, et al. Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticle covered natural cellulose fibers[J]. BioResources, 2011, 6: 4731-4738. [72] PORTER M M, NIKSIAR P, MCKITTRICK J. Microstructural control of colloidal-based ceramics by directional solidification under weak magnetic fields[J]. Journal of the American Ceramic Society, 2016, 99(6): 1917-1926. [73] DEVILLE S, MAIRE E, LASALLE A, et al. In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions—part I: initial instants[J]. Journal of the American Ceramic Society, 2009, 92(11): 2489-2496. [74] CHEN P Y, LIN A Y M, LIN Y S, et al. Structure and mechanical properties of selected biological materials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 208-226. [75] MEYERS M A, CHEN P Y, LOPEZ M I, et al. Biological materials: a materials science approach[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(5): 626-657. [76] CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596. [77] CHENG L, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 211-220. [78] PORTER M M, MERAZ L, CALDERON A, et al. Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting[J]. Composite Structures, 2015, 119: 174-184. [79] DEVILLE S. Freezing as a path to build complex composites[J]. Science, 2006, 311(5760): 515-518. [80] LEE S, PORTER M, WASKO S, et al. Potential bone replacement materials prepared by two methods[J]. MRS Online Proceedings Library, 2012, 1418(1): 177-188. |
[1] | 姚苏琴, 查文华, 刘新权, 季圣星, 何昌春, 余跃. 萍乡废弃煤矸石理化特性及热活化性能研究[J]. 硅酸盐通报, 2021, 40(7): 2280-2287. |
[2] | 范小春, 张雯静, 梁天福, 陈凯风. 回收轮胎钢纤维再生骨料混凝土基本力学性能试验研究[J]. 硅酸盐通报, 2021, 40(7): 2331-2340. |
[3] | 黄开林, 李书进, 臧旭航. 不同类型再生细骨料对保温混凝土力学性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2341-2347. |
[4] | 张翼, 朱艳梅, 任强, 蒋正武. 3D打印建筑技术及其水泥基材料研究进展评述[J]. 硅酸盐通报, 2021, 40(6): 1796-1807. |
[5] | 金源, 徐嘉宾, 孙登田, 陈明旭, 黄永波, 芦令超, 程新. 纳米二氧化硅对白水泥基3D打印材料结构变形、流变及力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1855-1862. |
[6] | 徐嘉宾, 金源, 赵智慧, 陈明旭, 芦令超, 程新. 氧化铁红颜料对白水泥基3D打印材料流变及可打印性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1863-1869. |
[7] | 张超, 邓智聪, 汪智斌, 侯泽宇, 贾子健, 王香港, 贾鲁涛, 陈春, 孙正明, 张亚梅, 潘金龙. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1870-1878. |
[8] | 崔聪聪, 李珊, 李伟, 包建勋, 张舸, 王功. 立体光固化3D打印成型碳化硅陶瓷的烧结特性[J]. 硅酸盐通报, 2021, 40(6): 1937-1942. |
[9] | 何逸宁, 戴高尚, 吴甲民, 张洁, 潘明珠, 陈敬炎, 陈颖, 王永均, 张红星. 环氧树脂含量对激光选区烧结制备多孔煤系高岭土陶瓷性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1950-1956. |
[10] | 明心昭, 刘志超, 王发洲, 胡曙光, 胡传林. Al2O3掺杂对γ-C2S碳化性能的影响[J]. 硅酸盐通报, 2021, 40(6): 2003-2010. |
[11] | 陈娇, 于诚, 慕儒, 余鑫. 纳米水化硅酸钙的制备及对水泥水化影响的研究进展[J]. 硅酸盐通报, 2021, 40(5): 1429-1140. |
[12] | 陈俊松, 王伟, 乔敏, 赵爽, 曾鲁平. 高岩温对喷射混凝土性能影响研究进展[J]. 硅酸盐通报, 2021, 40(5): 1441-1452. |
[13] | 严子伟, 刘黎, 孙晋峰, 卢豹, 祖庆贺, 臧军, 李德标, 侯贵华. 铝酸三钙和碳酸钙对硅酸盐水泥早期力学强度及凝结时间的协同作用研究[J]. 硅酸盐通报, 2021, 40(5): 1470-1476. |
[14] | 何威, 许吉航. 少层石墨烯对普通混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1477-1488. |
[15] | 田建冬, 陆隆源. 基于均匀设计试验法石材废粉再利用研究[J]. 硅酸盐通报, 2021, 40(5): 1536-1544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||