[1] PETRINI M, FERRANTE M, SU B. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration[J]. Dental Materials, 2013, 29(4): 375-381. [2] BAI H, WALSH F, GLUDOVATZ B, et al. Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method[J]. Advanced Materials, 2016, 28(1): 50-56. [3] SHEN P, XI J W, FU Y J, et al. Preparation of high-strength Al-Mg-Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 944-950. [4] SHAGA A, SHEN P, GUO R F, et al. Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration[J]. Ceramics International, 2016, 42(8): 9653-9659. [5] GUO R F, LV H C, SHEN P, et al. Lamellar-interpenetrated Al-Si-Mg/Al2O3-ZrO2 composites prepared by freeze casting and pressureless infiltration[J]. Ceramics International, 2017, 43(3): 3292-3297. [6] GUO R F, SHEN P, SUN C, et al. Processing and mechanical properties of lamellar-structured Al-7Si-5Cu/TiC composites[J]. Materials & Design, 2016, 106: 446-453. [7] WANG Y, SHEN P, GUO R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration[J]. Ceramics International, 2017, 43(4): 3831-3838. [8] MORITZ T, RICHTER H J. Ice-mould freeze casting of porous ceramic components[J]. Journal of the European Ceramic Society, 2007, 27(16): 4595-4601. [9] MUNCH E, SAIZ E, TOMSIA A P, et al. Architectural control of freeze-cast ceramics through additives and templating[J]. Journal of the American Ceramic Society, 2009, 92(7): 1534-1539. [10] SOFIE S W, DOGAN F. Freeze casting of aqueous alumina slurries with glycerol[J]. Journal of the American Ceramic Society, 2001, 84(7): 1459-1464. [11] CHINO Y, DUNAND D C. Directionally freeze-cast titanium foam with aligned, elongated pores[J]. Acta Materialia, 2008, 56(1): 105-113. [12] ARAKI K, HALLORAN J W. New freeze-casting technique for ceramics with sublimable vehicles[J]. Journal of the American Ceramic Society, 2004, 87(10): 1859-1863. [13] WEN C E, MABUCHI M, YAMADA Y, et al. Processing of biocompatible porous Ti and Mg[J]. Scripta Materialia, 2001, 45(10): 1147-1153. [14] CLEMMER R. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes[J]. Solid State Ionics, 2004, 166(3/4): 251-259. [15] CLEMMER R M C, CORBIN S F. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes[J]. Solid State Ionics, 2004, 166: 251-259. [16] MILOSHEVSKY G V, JORDAN P C. Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study[J]. Biophysical Journal, 2004, 87(6): 3690-3702. [17] SOFIE S W. Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process[J]. Journal of the American Ceramic Society, 2007, 90(7): 2024-2031. [18] THURN-ALBRECHT T, SCHOTTER J, KASTLE G A, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates[J]. Science, 2000, 290(5499): 2126-2129. [19] LAUNEY M E, RITCHIE R O. On the fracture toughness of advanced materials[J]. Advanced Materials, 2009, 21(20): 2103-2110. [20] LAUNEY M E, MUNCH E, ALSEM D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites[J]. J R Soc Interface, 2010, 7(46): 741-753. [21] LUZ G M, MANO J F. Biomimetic design of materials and biomaterials inspired by the structure of nacre[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1893): 1587-1605. [22] ESPINOSA H D, RIM J E, BARTHELAT F, et al. Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials[J]. Progress in Materials Science, 2009, 54(8): 1059-1100. [23] BARTHELAT F, ESPINOSA H D. An experimental investigation of deformation and fracture of nacre-mother of pearl[J]. Experimental Mechanics, 2007, 47(3): 311-324. [24] BARTHELAT F. Biomimetics for next generation materials[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365(1861): 2907-2919. [25] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials, 2015, 14(1): 23-36. [26] BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Materials, 2014, 13(5): 508-514. [27] LAUNEY M E, MUNCH E, ALSEM D H, et al. Designing highly toughened hybrid composites through nature-inspired hierarchical complexity[J]. Acta Materialia, 2009, 57(10): 2919-2932. [28] MUNCH E, LAUNEY M E, ALSEM D H, et al. Tough, bio-inspired hybrid materials[J]. Science (New York, N Y), 2008, 322(5907): 1516-1520. [29] LIN A Y M, CHEN P Y, MEYERS M A. The growth of nacre in the abalone shell[J]. Acta Biomaterialia, 2008, 4(1): 131-138. [30] MEYERS M A, LIN A Y M, CHEN P Y, et al. Mechanical strength of abalone nacre: role of the soft organic layer[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(1): 76-85. [31] NAGLIERI V, GLUDOVATZ B, TOMSIA A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase[J]. Acta Materialia, 2015, 98: 141-151. [32] ZHAO H W, YUE Y H, GUO L, et al. Cloning nacre’s 3D interlocking skeleton in engineering composites to achieve exceptional mechanical properties[J]. Advanced Materials, 2016, 28(25): 5099-5105. [33] KAMAT S V, HIRTH J P, MEHRABIAN R. Mechanical properties of particulate-reinforced aluminum-matrix composites[J]. Acta Metallurgica, 1989, 37(9): 2395-2402. [34] SCHULTE K, MINOSHIMA K. Damage mechanisms under tensile and fatigue loading of continuous fibre-reinforced metal-matrix composites[J]. Composites, 1993, 24(3): 197-208. [35] OCHIAI S, OSAMURA K. Influences of matrix ductility, interfacial bonding strength, and fiber volume fraction on tensile strength of unidirectional metal matrix composite[J]. Metallurgical Transactions A, 1990, 21(3): 971-977. [36] LOTTERMOSER A. Über das Ausfrieren von Hydrosolen[J]. Berichte der deutschen chemischen Gesellschaft, 1908, 41: 3976-3979. [37] BOBERTAG O, FEIST K, FISCHER H W. Über das Ausfrieren von Hydrosolen[J]. Berichte der deutschen chemischen Gesellschaft, 1908, 41: 3675-3679. [38] MAXWELL W A, GURNICK R S, FRANCISCO A C. Preliminary investigation of the freeze-casting method for forming refractory powders[J]. NACA Research Memorandum. Lewis Flight Propulsion Laboratory, 1954. [39] FUKASAWA T, ANDO M, OHJI T, et al. Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. Journal of the American Ceramic Society, 2001, 84(1): 230-232. [40] FUKASAWA T, DENG Z Y, ANDO M, et al. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. Journal of Materials Science, 2001, 36(10): 2523-2527. [41] DEVILLE S. Freeze-casting of porous ceramics: a review of current achievements and issues[J]. Advanced Engineering Materials, 2008, 10(3): 155-169. [42] LI W L, LU K, WALZ J Y. Freeze casting of porous materials: review of critical factors in microstructure evolution[J]. International Materials Reviews, 2012, 57(1): 37-60. [43] GUTIÉRREZ M C, FERRER M L, DEL MONTE F. Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly[J]. Chemistry of Materials, 2008, 20(3): 634-648. [44] QIAN L, ZHANG H F. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(2): 172-184. [45] DEVILLE S, SAIZ E, TOMSIA A P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(32): 5480-5489. [46] ARAKI K, HALLORAN J W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique[J]. Journal of the American Ceramic Society, 2005, 88(5): 1108-1114. [47] ARAKI K, HALLORAN J W. Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene-camphor eutectic system[J]. Journal of the American Ceramic Society, 2004, 87(11): 2014-2019. [48] GUO R, WANG C G, YANG A K. Piezoelectric properties of the 1-3 type porous lead zirconate titanate ceramics[J]. Journal of the American Ceramic Society, 2011, 94(6): 1794-1799. [49] ZHANG Y, ZHOU K C, BAO Y X, et al. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics[J]. Materials Science and Engineering: C, 2013, 33(1): 340-346. [50] FU Q, RAHAMAN M N, DOGAN F, et al. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2008, 86(2): 514-522. [51] DEVILLE S, VIAZZI C, GUIZARD C. Ice-structuring mechanism for zirconium acetate[J]. Langmuir, 2012, 28(42): 14892-14898. [52] PORTER M M, MCKITTRICK J, MEYERS M A. Biomimetic materials by freeze casting[J]. JOM, 2013, 65(6): 720-727. [53] YANG T Y, LEE J M, YOON S Y, et al. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(5): 1495-1502. [54] LEE J H, CHOI H J, YOON S Y, et al. Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique[J]. Journal of Porous Materials, 2013, 20(1): 219-226. [55] YOUNG Y T, YOUNG K W, YOUNG Y S, et al. Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method[J]. Journal of Physics and Chemistry of Solids, 2010, 71(4): 436-439. [56] HAN J C, HU L Y, ZHANG Y M, et al. Fabrication of ceramics with complex porous structures by the impregnate-freeze-casting process[J]. Journal of the American Ceramic Society, 2009, 92(9): 2165-2167. [57] ZUO K H, ZHANG Y, ZENG Y P, et al. Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite[J]. Ceramics International, 2011, 37(1): 407-410. [58] AKKOUCH A, ZHANG Z, ROUABHIA M. A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration[J]. Journal of Biomedical Materials Research Part A, 2011, 96A(4): 693-704. [59] DEVILLE S, SAIZ E, TOMSIA A P. Ice-templated porous alumina structures[J]. Acta Materialia, 2007, 55(6): 1965-1974. [60] MACCHETTA A, TURNER I G, BOWEN C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method[J]. Acta Biomaterialia, 2009, 5(4): 1319-1327. [61] TANG Z, KOTOV N A, MAGONOV S, et al. Nanostructured artificial nacre[J]. Nature Materials, 2003, 2(6): 413-418. [62] LIU Q, YE F, GAO Y, et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties[J]. Journal of Alloys and Compounds, 2014, 585: 146-153. [63] KIRSCHVINK J L, GOULD J L. Biogenic magnetite as a basis for magnetic field detection in animals[J]. Biosystems, 1981, 13(3): 181-201. [64] KALMIJN A J, GONZALEZ I F, MCCLUNE M C. The physical nature of life[J]. Journal of Physiology-Paris, 2002, 96(5/6): 355-362. [65] WALCOTT C, GREEN R P. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field[J]. Science, 1974, 184(4133): 180-182. [66] GOULD J L, KIRSCHVINK J L, DEFFEYES K S. Bees have magnetic remanence[J]. Science, 1978, 201(4360): 1026-1028. [67] KIRSCHVINK J L, KOBAYASHI-KIRSCHVINK A, WOODFORD B J. Magnetite biomineralization in the human brain[J]. PNAS, 1992, 89(16): 7683-7687. [68] BLAKEMORE R. Magnetotactic bacteria[J]. Science, 1975, 190(4212): 377-379. [69] FRANK M B, NALEWAY S E, HAROUSH T, et al. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting[J]. Materials Science and Engineering: C, 2017, 77: 484-492. [70] PORTER M M, YEH M, STRAWSON J, et al. Magnetic freeze casting inspired by nature[J]. Materials Science and Engineering: A, 2012, 556: 741-750. [71] MASHKOUR M, TAJVIDI M, KIMURA T, et al. Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticle covered natural cellulose fibers[J]. BioResources, 2011, 6: 4731-4738. [72] PORTER M M, NIKSIAR P, MCKITTRICK J. Microstructural control of colloidal-based ceramics by directional solidification under weak magnetic fields[J]. Journal of the American Ceramic Society, 2016, 99(6): 1917-1926. [73] DEVILLE S, MAIRE E, LASALLE A, et al. In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions—part I: initial instants[J]. Journal of the American Ceramic Society, 2009, 92(11): 2489-2496. [74] CHEN P Y, LIN A Y M, LIN Y S, et al. Structure and mechanical properties of selected biological materials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 208-226. [75] MEYERS M A, CHEN P Y, LOPEZ M I, et al. Biological materials: a materials science approach[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(5): 626-657. [76] CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596. [77] CHENG L, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 211-220. [78] PORTER M M, MERAZ L, CALDERON A, et al. Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting[J]. Composite Structures, 2015, 119: 174-184. [79] DEVILLE S. Freezing as a path to build complex composites[J]. Science, 2006, 311(5760): 515-518. [80] LEE S, PORTER M, WASKO S, et al. Potential bone replacement materials prepared by two methods[J]. MRS Online Proceedings Library, 2012, 1418(1): 177-188. |