[1] HUANG W, HUANG X G, XING Q, et al. Strength reduction factor of crumb rubber as fine aggregate replacement in concrete[J]. Journal of Building Engineering, 2020, 32: 101346. [2] KHALOO A R, DEHESTANI M, RAHMATABADI P. Mechanical properties of concrete containing a high volume of tire-rubber particles[J]. Waste Management, 2008, 28(12): 2472-2482. [3] 龙广成,李 宁,薛逸骅,等.冲击荷载作用下掺橡胶颗粒自密实混凝土的力学性能[J].硅酸盐学报,2016,44(8):1081-1090. LONG G C, LI N, XUE Y H, et al. Mechanical properties of self-compacting concrete incorporating rubber particles under impact load[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1081-1090 (in Chinese). [4] SUKONTASUKKUL P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel[J]. Construction and Building Materials, 2009, 23(2): 1084-1092. [5] YESILATA B, ISIKER Y, TURGUT P. Thermal insulation enhancement in concretes by adding waste PET and rubber pieces[J]. Construction and Building Materials, 2009, 23(5): 1878-1882. [6] THOMAS B S, GUPTA R C, PANICKER V J. Recycling of waste tire rubber as aggregate in concrete: durability-related performance[J]. Journal of Cleaner Production, 2016, 112: 504-513. [7] GHOLAMPOUR A, OZBAKKALOGLU T, HASSANLI R. Behavior of rubberized concrete under active confinement[J]. Construction and Building Materials, 2017, 138: 372-382. [8] GHOLAMPOUR A, FALLAH POUR A, HASSANLI R, et al. Behavior of actively confined rubberized concrete under cyclic axial compression[J]. Journal of Structural Engineering, 2019, 145(11): 04019131. [9] ABUZAID O, NABILAH A B, SAFIEE N A, et al. Rubberized concrete filled steel tube[J]. IOP Conference Series: Earth and Environmental Science, 2019, 357: 012014. [10] SILVA A, JIANG Y, MACEDO L, et al. Seismic performance of composite moment-resisting frames achieved with sustainable CFST members[J]. Frontiers of Structural and Civil Engineering, 2016, 10(3): 312-332. [11] DUARTE A P C, SILVA B A, SILVESTRE N, et al. Tests and design of short steel tubes filled with rubberised concrete[J]. Engineering Structures, 2016, 112: 274-286. [12] HOSSAIN K M A, CHU K T. Confinement of six different concretes in CFST columns having different shapes and slenderness[J]. International Journal of Advanced Structural Engineering, 2019, 11(2): 255-270. [13] 梁炯丰,蒋丽忠,吴华英,等.钢管橡胶混凝土柱轴压试验研究及力学性能分析[J].广西大学学报(自然科学版),2017,42(1):134-141. LIANG J F, JIANG L Z, WU H Y, et al. Experimental study on mechanical properties of rubber concrete filled steel tube column under axial compression[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(1): 134-141 (in Chinese). [14] 徐培蓁,李会文,闫洪生,等.橡胶掺量对圆钢管橡胶混凝土短柱力学性能的影响[J].建筑结构,2019,49(3):66-70. XU P Z, LI H W, YAN H S, et al. Effect of rubber content on mechanical properties of round rubber concrete-filled steel tubular short columns[J]. Building Structure, 2019, 49(3): 66-70 (in Chinese). [15] 刘艳华.钢管橡胶混凝土柱力学性能研究[D].沈阳:东北大学,2011. LIU Y H. Behavior of rubber concrete-filled steel tubular columns[D]. Shenyang: Northeastern University, 2011 (in Chinese). [16] 中华人民共和国建设部.普通混凝土配合比设计规程:JGJ 55—2011[S].北京:中国建筑工业出版社,2011. Ministry of Construction of the People’s Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Building Industry Press, 2011 (in Chinese). [17] 中华人民共和国建设部,国家质量监督检验检疫总局.普通混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社,2019. Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standard test method for physical mechanical properties of ordinary concrete: GB/T 50081—2019[S]. Beijing: China Building Industry Press, 2019 (in Chinese). [18] 宋玉普,赵国藩,彭 放,等.三轴受压状态下轻骨料混凝土的强度特性[J].水利学报,1993,24(6):10-16. SONG Y P, ZHAO G F, PENG F, et al. Behavior of strength of lightweight concrete under triaxial compressive stress[J]. Journal of Hydraulic Engineering, 1993, 24(6): 10-16 (in Chinese). [19] TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal of Constructional Steel Research, 2013, 89: 121-131. [20] 韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社,2004. HAN L H. Concrete-filled steel tubular structures: theory and practice[M]. Beijing: Science Press, 2004 (in Chinese). [21] Eurocode 4. Design of composite steel and concrete structures. Part 1.1[S]. London: British Standards Institution, 1999. [22] American Steel Construction Institute standard. Specification for structural steel buildings: AISC 360—2005[S]. Chicago: American Institute of Steel Construction, Inc., 2005. [23] 中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for concrete-filled steel tubular structures: GB 50936—2014[S]. Beijing: China Building Industry Press, 2014 (in Chinese). |