硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (6): 1918-1926.
刘文进1, 周国相1, 林坤鹏1, 张砚召1, 赵哲1, 杨治华1,2, 贾德昌1, 周玉1
收稿日期:
2021-04-02
修回日期:
2021-05-14
出版日期:
2021-06-15
发布日期:
2021-07-08
通讯作者:
杨治华,研究员。E-mail:zhyang@hit.edu.cn
作者简介:
刘文进(1993—),女。主要从事压敏陶瓷方面的研究。E-mail:1227614254@qq.com
基金资助:
LIU Wenjin1, ZHOU Guoxiang1, LIN Kunpeng1, ZHANG Yanzhao1, ZHAO Zhe1, YANG Zhihua1,2, JIA Dechang1, ZHOU Yu1
Received:
2021-04-02
Revised:
2021-05-14
Online:
2021-06-15
Published:
2021-07-08
摘要: 3D打印技术因其操作简单便捷、成型快速灵活、可制备复杂结构的器件等优点,在精密陶瓷零件制造方面具有广泛应用。本文根据3D打印陶瓷的材料形态综述不同3D打印技术在陶瓷制备方面的特点,重点介绍了陶瓷3D打印成型技术中直写式3D打印、光固化3D打印、喷墨3D打印等技术所涉及的粘结剂、分散剂等组分的应用及作用机理,并对水基和非水基两种类型的添加剂组分进行总结和探讨,以期为3D打印技术制备高性能陶瓷样件提供参考。
中图分类号:
刘文进, 周国相, 林坤鹏, 张砚召, 赵哲, 杨治华, 贾德昌, 周玉. 基于浆料形态的陶瓷3D打印技术的浆料体系研究进展[J]. 硅酸盐通报, 2021, 40(6): 1918-1926.
LIU Wenjin, ZHOU Guoxiang, LIN Kunpeng, ZHANG Yanzhao, ZHAO Zhe, YANG Zhihua, JIA Dechang, ZHOU Yu. Research Progress on Slurry System of Ceramic 3D Printing Technology Based on Slurry Morphology[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1918-1926.
[1] PRISTINSKIY Y, WASHINGTON SOLIS PINARGOTE N, SMIRNOV A. The effect of MgO addition on the microstructure and mechanical properties of alumina ceramic obtained by spark plasma sintering[J]. Materials Today: Proceedings, 2019, 19: 1990-1993. [2] ZHANG D, LIU X F, QIU J R. 3D printing of glass by additive manufacturing techniques: a review[J]. Frontiers of Optoelectronics, 2020: 1-15. [3] ÖZKOL E. Rheological characterization of aqueous 3Y-TZP inks optimized for direct thermal ink-jet printing of ceramic components[J]. Journal of the American Ceramic Society, 2013, 96(4): 1124-1130. [4] HWA L C, RAJOO S, NOOR A M, et al. Recent advances in 3D printing of porous ceramics: a review[J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 323-347. [5] BRAKORA K F, HALLORAN J, SARABANDI K. Design of 3-D monolithic MMW antennas using ceramic stereolithography[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 790-797. [6] ZAKERI S, VIPPOLA M, LEVÄNEN E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35: 101177. [7] HINCZEWSKI C, CORBEL S, CHARTIER T. Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society, 1998, 18(6): 583-590. [8] 王志永,赵宇辉,赵吉宾,等.陶瓷增材制造的研究现状与发展趋势[J].真空,2020,57(1):67-75. WANG Z Y, ZHAO Y H, ZHAO J B, et al. Research status and development trend of ceramic precursors[J]. Vacuum, 2020, 57(1): 67-75 (in Chinese). [9] GRIFFITH M L, HALLORAN J W. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79(10): 2601-2608. [10] HAFKAMP T, VAN BAARS G, DE JAGER B, et al. A feasibility study on process monitoring and control in vat photopolymerization of ceramics[J]. Mechatronics, 2018, 56: 220-241. [11] LE H P. Progress and trends in ink-jet printing technology[J]. Journal of Imaging Science and Technology, 1998, 42(1): 49-62. [12] WÄTJEN A M, GINGTER P, KRAMER M, et al. Novel prospects and possibilities in additive manufacturing of ceramics by means of direct inkjet printing[J]. Advances in Mechanical Engineering, 2014, 6: 141346. [13] HUANG Z G, TANG Y, GUO H, et al. 3D printing of ceramics and graphene circuits-on-ceramics by thermal bubble inkjet technology and high temperature sintering[J]. Ceramics International, 2020, 46(8): 10096-10104. [14] UTTIYA S, BERNINI C, VIGNOLO M, et al. Inkjet printing of conducting silver patterns on alumina and insulating ceramic-glass by saline precursors[J]. Thin Solid Films, 2017, 642: 370-376. [15] 李亚运,司云晖,熊信柏,等.陶瓷3D打印技术的研究与进展[J].硅酸盐学报,2017,45(6):793-805. LI Y Y, SI Y H, XIONG X B, et al. Research and progress on three dimensional printing of ceramic materials[J]. Journal of the Chinese Ceramic Society, 2017, 45(6): 793-805 (in Chinese). [16] VENKATESH S, RAHUL S H, BALASUBRAMANIAN K. Inkjet printing yttria stabilized zirconia coatings on porous and nonporous substrates[J]. Ceramics International, 2020, 46(3): 3994-3999. [17] 谭 灵,郑乃章.陶瓷喷墨打印技术的现状与展望[J].中国陶瓷工业,2012,19(4):20-23. TAN L, ZHENG N Z. Key technical problems in ceramic ink jet printing[J]. China Ceramic Industry, 2012, 19(4): 20-23 (in Chinese). [18] YANG L L, ZENG X J, DITTA A, et al. Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing[J]. Journal of Advanced Ceramics, 2020, 9(3): 312-319. [19] TANG D N, HAO L, LI Y, et al. Dual gradient direct ink writing for formation of kaolinite ceramic functionally graded materials[J]. Journal of Alloys and Compounds, 2020, 814: 152275. [20] PIERIN G, GROTTA C, COLOMBO P, et al. Direct ink writing of micrometric SiOC ceramic structures using a preceramic polymer[J]. Journal of the European Ceramic Society, 2016, 36(7): 1589-1594. [21] REVELO C F, COLORADO H A. 3D printing of kaolinite clay ceramics using the direct ink writing (DIW) technique[J]. Ceramics International, 2018, 44(5): 5673-5682. [22] FARAHANI R D, DUBÉ M, THERRIAULT D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications[J]. Advanced Materials, 2016, 28(28): 5794-5821. [23] CHEN J M, WANG X B, ZUO T C. Microfabrication using selective laser sintering micron metal powder[C]//Proc SPIE 5116, Smart Sensors, Actuators, and MEMS, 2003, 5116: 647-651. [24] KRUTH J P, WANG X, LAOUI T, et al. Lasers and materials in selective laser sintering[J]. Assembly Automation, 2003, 23(4): 357-371. [25] SHIRAZI S F, GHAREHKHANI S, MEHRALI M, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing[J]. Science and Technology of Advanced Materials, 2015, 16(3): 033502. [26] GUAN J R, WANG Q P, ZHANG X W, et al. Selective laser melting of yttria-stabilized zirconia[J]. Materials Research Express, 2018, 6(1): 015402. [27] SHISHKOVSKY I, YADROITSEV I, BERTRAND P, et al. Alumina-zirconium ceramics synthesis by selective laser sintering/melting[J]. Applied Surface Science, 2007, 254(4): 966-970. [28] ISAKOV D V, LEI Q, CASTLES F, et al. 3D printed anisotropic dielectric composite with meta-material features[J]. Materials & Design, 2016, 93: 423-430. [29] RUSCITTI A, TAPIA C, RENDTORFF N M. A review on additive manufacturing of ceramic materials based on extrusion processes of clay pastes[J]. Cerâmica, 2020, 66(380): 354-366. [30] WINDSHEIMER H, TRAVITZKY N, HOFENAUER A, et al. Laminated object manufacturing of preceramic-paper-derived Si-SiC composites[J]. Advanced Materials, 2007, 19(24): 4515-4519. [31] PINARGOTE N W S, SMIRNOV A, PERETYAGIN N, et al. Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: a review[J]. Preprints, 2020. [32] VAEZI M, CHUA C K. Effects of layer thickness and binder saturation level parameters on 3D printing process[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(1/2/3/4): 275-284. [33] ENNETI R K, PROUGH K C. Effect of binder saturation and powder layer thickness on the green strength of the binder jet 3D printing (BJ3DP) WC-12%Co powders[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 104991. [34] GOSWAMI A, K A, BALASHANMUGAM N, et al. Optimization of rheological properties of photopolymerizable alumina suspensions for ceramic microstereolithography[J]. Ceramics International, 2014, 40(2): 3655-3665. [35] LI K H, ZHAO Z. The effect of the surfactants on the formulation of UV-curable SLA alumina suspension[J]. Ceramics International, 2017, 43(6): 4761-4767. [36] WU K C, HALLORAN J W. Photopolymerization monitoring of ceramic stereolithography resins by FTIR methods[J]. Journal of Materials Science, 2005, 40(1): 71-76. [37] BAE C J, HALLORAN J W. Integrally cored ceramic mold fabricated by ceramic stereolithography[J]. International Journal of Applied Ceramic Technology, 2011, 8(6): 1255-1262. [38] LI X B, ZHONG H, ZHANG J X, et al. Dispersion and properties of zirconia suspensions for stereolithography[J]. International Journal of Applied Ceramic Technology, 2020, 17(1): 239-247. [39] AZUMA S, OBATA S, YOSHIDA M, et al. Preparation of silicon carbide slurry for UV curing stereolithography[J]. Materials Today: Proceedings, 2019, 16: 72-77. [40] DOREAU F, CHAPUT C, CHARTIER T. Stereolithography for manufacturing ceramic parts[J]. Advanced Engineering Materials, 2000, 2(8): 493-496. [41] LICCIULLI A, ESPOSITO CORCIONE C, GRECO A, et al. Laser stereolithography of ZrO2 toughened Al2O3[J]. Journal of the European Ceramic Society, 2005, 25(9): 1581-1589. [42] KOMISSARENKO D, SOKOLOV P, EVSTIGNEEVA A, et al. Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts[J]. Materials, 2018, 11(12): 2350. [43] ALLEN BRADY G, HALLORAN J W. Stereolithography of ceramic suspensions[J]. Rapid Prototyping Journal, 1997, 3(2): 61-65. [44] JOHANSSON E, LIDSTRÖM O, JOHANSSON J, et al. Influence of resin composition on the defect formation in alumina manufactured by stereolithography[J]. Materials, 2017, 10(2): 138. [45] GRIFFITH M L, HALLORAN J W. Scattering of ultraviolet radiation in turbid suspensions[J]. Journal of Applied Physics, 1997, 81(6): 2538-2546. [46] 陈敏翼,陈锡强,尚学峰.立体光固化增材制造用陶瓷浆料流变性能优化的研究进展[J].陶瓷学报,2020,41(5):633-643. CHEN M Y, CHEN X Q, SHANG X F. Research progress on rheological property optimization of ceramic slurries for stereo lithography additive manufacturing[J]. Journal of Ceramics, 2020, 41(5): 633-643 (in Chinese). [47] WU H D, CHENG Y L, LIU W, et al. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography[J]. Ceramics International, 2016, 42(15): 17290-17294. [48] WANG Y Y, WANG Z Y, LIU S H, et al. Additive manufacturing of silica ceramics from aqueous acrylamide based suspension[J]. Ceramics International, 2019, 45(17): 21328-21332. [49] MALEKSAEEDI S, ENG H, WIRIA F E, et al. Property enhancement of 3D-printed alumina ceramics using vacuum infiltration[J]. Journal of Materials Processing Technology, 2014, 214(7): 1301-1306. [50] 李 伶,高 勇,王重海,等.陶瓷部件3D打印技术的研究进展[J].硅酸盐通报,2016,35(9):2892-2897. LI L, GAO Y, WANG C H, et al. Research development of 3D printing ceramic parts[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9): 2892-2897 (in Chinese). [51] WANG H R, CIMA M J, SACHS E M. Alumina-doped silica gradient-index (GRIN) lenses by slurry-based three-dimensional printing (S-3DPTM)[J]. MRS Online Proceedings Library, 2003, 758(1): 151-156. [52] XIA X G, DUAN G L. Effect of solid loading on properties of zirconia ceramic by direct ink writing[J]. Materials Research Express, 2021, 8(1): 015403. [53] CHUMNANKLANG R, PANYATHANMAPORN T, SITTHISERIPRATIP K, et al. 3D printing of hydroxyapatite: effect of binder concentration in pre-coated particle on part strength[J]. Materials Science and Engineering: C, 2007, 27(4): 914-921. [54] MUNIZ N O, VECHIETTI F A, DOS SANTOS L A L. Influence of several binders on the mechanical properties of alumina parts manufactured by 3D inkjet printing[J]. Materials Research Express, 2019, 6(11): 115341. [55] SACHS E, CIMA M, CORNIE J. Three-dimensional printing: rapid tooling and prototypes directly from a CAD model[J]. CIRP Annals, 1990, 39(1): 201-204. [56] ZHU K, YANG D Y, YU Z F, et al. Additive manufacturing of SiO2-Al2O3 refractory products via direct ink writing[J]. Ceramics International, 2020, 46(17): 27254-27261. [57] ZHAO H P, YE C S, FAN Z T, et al. 3D printing of CaO-based ceramic core using nanozirconia suspension as a binder[J]. Journal of the European Ceramic Society, 2017, 37(15): 5119-5125. [58] ZHAO H P, YE C S, FAN Z T, et al. 3D printing of ZrO2 ceramic using nano-zirconia suspension as a binder[C]//Proceedings of the 2015 4th International Conference on Sensors, Measurement and Intelligent Materials. December 27-28, 2015. Shenzhen, China. Paris: Atlantis Press, 2016: 654-657. [59] JIN H Z, YANG Z H, CAI D L, et al. 3D printing of porous Si2N2O ceramics based on strengthened green bodies fabricated via strong colloidal gel[J]. Materials & Design, 2020, 185: 108220. [60] GARCÍA-TUÑÓN E, FEILDEN E, ZHENG H, et al. Graphene oxide: an all-in-one processing additive for 3D printing[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32977-32989. [61] HINCZEWSKI C, CORBEL S, CHARTIER T. Stereolithography for the fabrication of ceramic three-dimensional parts[J]. Rapid Prototyping Journal, 1998, 4(3): 104-111. [62] BADEV A, ABOULIATIM Y, CHARTIER T, et al. Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222(1): 117-122. [63] UTELA B, STORTI D, ANDERSON R, et al. A review of process development steps for new material systems in three dimensional printing (3DP)[J]. Journal of Manufacturing Processes, 2008, 10(2): 96-104. [64] PONNAMBALAM P, CIMBATORE P C, RAMAKRISHNAN N, et al. Rheological behaviour of ceramic inks for direct ceramic inkjet printing[J]. Defence Science Journal, 2006, 56(2): 279-288. [65] FU Q, SAIZ E, TOMSIA A P. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration[J]. Acta Biomaterialia, 2011, 7(10): 3547-3554. [66] YANG L L, ZENG X J, ZHANG Y. 3D printing of alumina ceramic parts by heat-induced solidification with carrageenan[J]. Materials Letters, 2019, 255: 126564. [67] MIKOLAJEK M, FRIEDERICH A, KOHLER C, et al. Direct inkjet printing of dielectric ceramic/polymer composite thick films[J]. Advanced Engineering Materials, 2015, 17(9): 1294-1301. [68] JANG K J, KANG J H, FISHER J G, et al. Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing[J]. Dental Materials, 2019, 35(5): e97-e106. [69] ZHANG K Q, HE R J, XIE C, et al. Photosensitive ZrO2 suspensions for stereolithography[J]. Ceramics International, 2019, 45(9): 12189-12195. [70] FRANCHIN G, MADEN H, WAHL L, et al. Optimization and characterization of preceramic inks for direct ink writing of ceramic matrix composite structures[J]. Materials, 2018, 11(4): 515. |
[1] | 王守兴, 李伶, 毕鲁南, 刘时浩, 王营营, 鲍晓芸, 韩卓群, 屈忠宝, 吕佳琪. 大壁厚3D打印SiO2陶瓷快速制备技术研究[J]. 硅酸盐通报, 2021, 40(6): 1943-1949. |
[2] | 涂宝丽, 张青红, 王海风, 刘梅. 表面改性氧化锆无机填料对齿科自酸蚀粘结剂性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1735-1742. |
[3] | 林小清, 王浩键, 梁若繁, 宋小姣, 吴敏, 关康, 彭诚, 杜杨. 陶瓷添加剂ISOBAM对氧化铝浆料流变性能的影响[J]. 硅酸盐通报, 2021, 40(4): 1338-1343. |
[4] | 吴一晨, 郭荣鑫, 夏海廷, 索玉霞, 未立煌, 陈佳敏. 不同分散剂对复掺GO/CNFs水泥基复合材料力学和导电性能的影响[J]. 硅酸盐通报, 2021, 40(3): 731-740. |
[5] | 胡星, 陈东平, 余林文, 汪文文, 吴文杰. 环保型套筒灌浆料的配合比设计及性能研究[J]. 硅酸盐通报, 2021, 40(2): 557-564. |
[6] | 胡善海, 钱玉鹏, 江学峰, 王飞, 丁锋, 赵绍林. 蛭石基流延浆料的流变性能研究[J]. 硅酸盐通报, 2021, 40(1): 312-316. |
[7] | 胡波;高宗强;鲍崇高. 硅酸钙/β-磷酸三钙生物陶瓷的光固化成型工艺及性能研究[J]. 硅酸盐通报, 2020, 39(9): 2950-2955. |
[8] | 王飞;钱玉鹏;江学峰;胡善海;吴望妮;田忍杰;王路路. 高温膨胀蛭石粉末分散稳定性研究[J]. 硅酸盐通报, 2020, 39(5): 1403-1407. |
[9] | 李智伟;田昂;王宗凡;张永明;徐树英;徐凯;李家飞. 以粉煤灰为原料制备高纯单分散球形纳米氧化铝[J]. 硅酸盐通报, 2020, 39(3): 812-818. |
[10] | 贺梦鸽;张文尧;寿烨俊;康友伟;张宏泉. 面向增材制造的废弃陶瓷再生技术的研究[J]. 硅酸盐通报, 2019, 38(6): 1966-197. |
[11] | 王百年;阳春娇;宛强;杨保俊;方晓宇. 由低模数水玻璃制备纳米白炭黑的分散剂筛选[J]. 硅酸盐通报, 2019, 38(3): 911-917. |
[12] | 窦倩;王涛;张书勤;王珊珊;张新庄. 碳纳米管固井水泥复合材料抗腐蚀及力学性能研究[J]. 硅酸盐通报, 2019, 38(11): 3703-371. |
[13] | 张春苗;刘云霄;王倩;王滕;宁云峰;姜成业. 浆骨比及骨料品种对超细水泥灌浆料流变性能的影响[J]. 硅酸盐通报, 2018, 37(7): 2297-2303. |
[14] | 刘全威;吴涛;成然. 预留孔钢筋浆锚搭接试验研究及可靠度分析[J]. 硅酸盐通报, 2018, 37(4): 1324-1331. |
[15] | 陆春;徐艳荣;戚丁文;齐文;焦守政;项松. 3D打印氧化硅陶瓷的制备及性能研究[J]. 硅酸盐通报, 2018, 37(3): 939-943. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||