硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (5): 1646-1656.
所属专题: 陶瓷
王珍, 凌永一, 尹艺程, 王子昊, 张婧, 贾全利, 刘新红
收稿日期:
2020-12-29
修回日期:
2021-01-28
出版日期:
2021-05-15
发布日期:
2021-06-07
通讯作者:
刘新红,博士,教授。E-mail:liuxinhong@zzu.edu.cn
作者简介:
王 珍(1996—),女,硕士研究生。主要从事无机非金属材料研究。E-mail:1031090101@qq.com
基金资助:
WANG Zhen, LING Yongyi, YIN Yicheng, WANG Zihao, ZHANG Jing, JIA Quanli, LIU Xinhong
Received:
2020-12-29
Revised:
2021-01-28
Online:
2021-05-15
Published:
2021-06-07
摘要: TiC具有高熔点、高硬度、高化学稳定性、高耐磨性等优良性能,在多个行业具有广阔的应用前景。目前合成TiC粉体的方法较多,本文综述了碳/金属热还原法、熔盐辅助合成法、机械合金化法等几种主要合成方法,并分析了各种合成方法的优缺点,可为低成本、大规模合成高纯度、形貌可控的TiC粉体提供参考,还对TiC粉体未来合成研究进行了展望。
中图分类号:
王珍, 凌永一, 尹艺程, 王子昊, 张婧, 贾全利, 刘新红. TiC粉体合成的研究现状与展望[J]. 硅酸盐通报, 2021, 40(5): 1646-1656.
WANG Zhen, LING Yongyi, YIN Yicheng, WANG Zihao, ZHANG Jing, JIA Quanli, LIU Xinhong. Research Progress and Perspective on Synthesis of TiC Powder[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1646-1656.
[1] SHA X J, XIAO N M, GUAN Y J, et al. A first-principles investigation on mechanical and metallic properties of titanium carbides under pressure[J]. Journal of Materials Science & Technology, 2018, 34(10): 1953-1958. [2] GHOSH S, RANJAN P, KUMAAR A, et al. Synthesis of titanium carbide nanoparticles by wire explosion process and its application in carbon dioxide adsorption[J]. Journal of Alloys and Compounds, 2019, 794: 645-653. [3] NI Y L, LUO R Y, LUO H. Fabrication and mechanical properties of 3-D Cf/C-SiC-TiC composites prepared by RMI[J]. Journal of Alloys and Compounds, 2019, 798: 784-789. [4] AHN I S, PARK D K, LEE Y H. Synthesis of titanium carbide nano particles by the mechano chemical process[J]. Journal of Korean Powder Metallurgy Institute, 2009, 16(1): 43-49. [5] 谢 真,周大利,杨为中,等.真空原位碳热还原法制备纳米碳化钛粉体[J].钢铁钒钛,2017,38(1):38-42. XIE Z, ZHOU D L, YANG W Z, et al. Preparation of nano-TiC powders by in situ carbothermal method in vacuum[J]. Iron Steel Vanadium Titanium, 2017, 38(1): 38-42 (in Chinese). [6] ALSAWAT M, ALTALHI T, ALOTAIBI N F, et al. Titanium carbide-titanium boride composites by self propagating high temperature synthesis approach: influence of zirconia additives on the mechanical properties[J]. Results in Physics, 2019, 13: 102292. [7] WANG M Z, SHENG Q L, ZHANG D W, et al. TiC nanoparticles-chitosan composite film for the direct electron transfer of myoglobin and its application in biosensing[J]. Bioelectrochemistry, 2012, 86: 46-53. [8] GUO Q H, LIU L J, WU T T, et al. Flexible and conductive titanium carbide-carbon nanofibers for high-performance glucose biosensing[J]. Electrochimica Acta, 2018, 281: 517-524. [9] DE BONIS A, SANTAGATA A, GALASSO A, et al. Formation of titanium carbide (TiC) and TiC@C core-shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid[J]. Journal of Colloid and Interface Science, 2017, 489: 76-84. [10] SHAHZAD A, RASOOL K, MIRAN W, et al. Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite[J]. Journal of Hazardous Materials, 2018, 344: 811-818. [11] GUO Z W, LIU T, WANG Q T, et al. Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane[J]. RSC Advances, 2018, 8(2): 843-847. [12] CORRADETTI S, CARTURAN S M, MAGGIONI G, et al. Nanocrystalline titanium carbide/carbon composites as irradiation targets for isotopes production[J]. Ceramics International, 2020, 46(7): 9596-9605. [13] KUMARAGURU S, KUMAR G G, RAGHU S, et al. Fabrication of ternary Ni-TiO2-TiC composite coatings and their enhanced microhardness for metal finishing application[J]. Applied Surface Science, 2018, 447: 463-470. [14] THORNE K, TING S J, CHU C J, et al. Synthesis of TiC via polymeric titanates: the preparation of fibres and thin films[J]. Journal of Materials Science, 1992, 27(16): 4406-4414. [15] KOC R. Kinetics and phase evolution during carbothermal synthesis of titanium carbide from carbon-coated titania powder[J]. Journal of the European Ceramic Society, 1997, 17(11): 1309-1315. [16] SUN H Y, KONG X, SEN W, et al. Preparation of TiC powders by carbothermic reduction technique at vacuum condition[J]. Advanced Materials Research, 2015, 1089: 142-146. [17] SEN W, SUN H Y, YANG B, et al. Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(5): 628-632. [18] KIM B S, WOO Y C, KIM D J. Synthesis of ultra fine TiC powders by carbothermal reduction[J]. Materials Science Forum, 2007, 534/535/536: 141-144. [19] XIE Z, DENG Y, YANG Y Y, et al. Preparation of nano-sized titanium carbide particles via a vacuum carbothermal reduction approach coupled with purification under hydrogen/argon mixed gas[J]. RSC Advances, 2017, 7(15): 9037-9044. [20] CHEN X, FAN J L, LU Q. Synthesis and characterization of TiC nanopowders via sol-gel and subsequent carbothermal reduction process[J]. Journal of Solid State Chemistry, 2018, 262: 44-52. [21] ZLTE I, LETLENA A. Synthesis and characterization of nanosized titanium carbide by carbothermal reduction of precursor gels[J]. Materials Science, 2012, 18(1): 75-78. [22] CHANDRA N, SHARMA M, SINGH D K, et al. Synthesis of nano-TiC powder using titanium gel precursor and carbon particles[J]. Materials Letters, 2009, 63(12): 1051-1053. [23] GOTOH Y, FUJIMURA K, KOIKE M, et al. Synthesis of titanium carbide from a composite of TiO2 nanoparticles/methyl cellulose by carbothermal reduction[J]. Materials Research Bulletin, 2001, 36(13/14): 2263-2275. [24] HU M L, WEI R R, QU Z F, et al. Preparation of TiC by carbothermal reduction in vacuum and acid leaching using blast furnace slag bearing titania[J]. Green Processing and Synthesis, 2016, 5(2): 195-203. [25] 扈玫珑,尹方庆,魏瑞瑞,等.真空碳热还原-酸浸含钛高炉渣制备TiC[J].钢铁研究学报,2016,28(5):24-29. HU M L, YIN F Q, WEI R R, et al. Preparation of TiC using the blast furnace slag bearing titanium by carbothermal reduction in vacuum and acid leacing[J]. Journal of Iron and Steel Research, 2016, 28(5): 24-29 (in Chinese). [26] REN X T, LIU Y C, CHEN S H, et al. The synthesis of TiC powders by carbothermal reduction method in vacuum[J]. Advanced Materials Research, 2014, 1064: 62-65. [27] 刘 阳,曾令可,尹 虹,等.微波合成纳米碳化钛粉体的机理探讨[J].中国陶瓷,2005,41(4):44-45+40. LIU Y, ZENG L K, YIN H, et al. Mechanism studies on microwave synthesis of nano-titanium carbide[J]. China Ceramics, 2005, 41(4): 44-45+40 (in Chinese). [28] 刘 阳,曾令可,胡晓力.微波合成纳米碳化钛粉体的热力学研究[J].中国陶瓷工业,2003,10(3):20-23. LIU Y, ZENG L K, HU X L. Thermodynamic studies on microwave synthesis of nano-TiC powders[J]. China Ceramic Industry, 2003, 10(3): 20-23 (in Chinese). [29] LIU P G, YANG Q S, SHUI A Z, et al. Microwave synthesis of nano-titanium carbide[J]. Advanced Materials Research, 2011, 399/400/401: 561-564. [30] ZHANG H J, LI F L, JIA Q L, et al. Preparation of titanium carbide powders by sol-gel and microwave carbothermal reduction methods at low temperature[J]. Journal of Sol-Gel Science and Technology, 2008, 46(2): 217-222. [31] DYJAK S, NOREK M, POLAN'SKI M, et al. A simple method of synthesis and surface purification of titanium carbide powder[J]. International Journal of Refractory Metals and Hard Materials, 2013, 38: 87-91. [32] LEE D W, ALEXANDROVSKII S V, KIM B K. Novel synthesis of substoichiometric ultrafine titanium carbide[J]. Materials Letters, 2004, 58(9): 1471-1474. [33] MA J H, WU M N, DU Y H, et al. Synthesis of nanocrystalline titanium carbide with a new convenient route at low temperature and its thermal stability[J]. Materials Science and Engineering: B, 2008, 153(1/2/3): 96-99. [34] BAVBANDE D V, MISHRA R, JUNEJA J M. Studies on the kinetics of synthesis of TiC by calciothermic reduction of TiO2 in presence of carbon[J]. Journal of Thermal Analysis and Calorimetry, 2004, 78(3): 775-780. [35] LU Q Y, HU J Q, TANG K B, et al. The co-reduction route to TiC nanocrystallites at low temperature[J]. Chemical Physics Letters, 1999, 314(1/2): 37-39. [36] SONG Y F, ZHU H X, DENG C J, et al. Synthesis of stoichiometric titanium carbide by a combination of carbothermal reduction and molten salt method and its characterization[J]. Rare Metal Materials and Engineering, 2018, 47(4): 1082-1088. [37] YANG L X, WANG Y, LIU R J, et al. In-situ synthesis of nanocrystalline TiC powders, nanorods, and nanosheets in molten salt by disproportionation reaction of Ti(II) species[J]. Journal of Materials Science & Technology, 2020, 37: 173-180. [38] 崔富晖.熔盐电化学脱氧制备碳化钛[D].沈阳:东北大学,2014. CUI F H. Preparation of TiC by salt electrochemistry deoxy method[D]. Shenyang: Northeastern University, 2014 (in Chinese). [39] ZHANG L L, WANG S B, JIAO S Q, et al. Electrochemical synthesis of titanium oxycarbide in a CaCl2 based molten salt[J]. Electrochimica Acta, 2012, 75: 357-359. [40] YAN X Y, POWNCEBY M I, COOKSEY M A, et al. Preparation of TiC powders and coatings by electrodeoxidation of solid TiO2 in molten salts[J]. Mineral Processing and Extractive Metallurgy, 2009, 118(1): 23-34. [41] CAO C Z, LIU W Q, JAVADI A, et al. Scalable manufacturing of 10 nm TiC nanoparticles through molten salt reaction[J]. Procedia Manufacturing, 2017, 10: 634-640. [42] CALOS N J, FORRESTER J S, SCHAFFER G B. The mechanisms of combustion and continuous reactions during mechanical alloying[J]. Journal of Solid State Chemistry, 2001, 158(2): 268-278. [43] RAZAVI M, RAHIMIPOUR M R, RAJABI-ZAMANI A H. Synthesis of nanocrystalline TiC powder from impure Ti chips via mechanical alloying[J]. Journal of Alloys and Compounds, 2007, 436(1/2): 142-145. [44] 刘长松,殷 声.自蔓延高温合成(SHS)反应机械合金化[J].稀有金属,1999,23(2):137-141. LIU C S, YIN S. Self-propagating high temperature synthesis (SHS) reactive mechanical alloying[J]. Chinese Journal of Rare Metals, 1999, 23(2): 137-141 (in Chinese). [45] LOHSE B H, CALKA A, WEXLER D. Effect of starting composition on the synthesis of nanocrystalline TiC during milling of titanium and carbon[J]. Journal of Alloys and Compounds, 2005, 394(1/2): 148-151. [46] OGHENEVWETA J E, WEXLER D, CALKA A. Early stages of phase formation before the ignition peak during mechanically induced self-propagating reactions (MSRs) of titanium and graphite[J]. Scripta Materialia, 2016, 122: 93-97. [47] 朱心昆,赵昆渝,程抱昌,等.高能球磨制备纳米TiC粉末[J].中国有色金属学报,2001,11(2):269-272. ZHU X K, ZHAO K Y, CHENG B C, et al. Fabrication of nanocrystalline TiC powder by high-energy ball milling[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(2): 269-272 (in Chinese). [48] YANG C J. Fast and efficient approach to synthesis of ultra-fine TiC powder[J]. Materials Research Express, 2019, 7(1): 016508. [49] GHOSH B, PRADHAN S K. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying[J]. Materials Chemistry and Physics, 2010, 120(2/3): 537-545. [50] 杨遇春.自蔓延高温合成(SHS)及其应用(一)[J].稀有金属,1991,15(5):371-377. YANG Y C. Self-propagating high temperature synthesis (SHS) and its application (1)[J]. Chinese Journal of Rare Metals, 1991, 15(5): 371-377 (in Chinese). [51] MISHRA S K, DAS S, PAMACHANDRARAO P, et al. Self-propagating high temperature synthesis(SHS) of titanium carbide[J]. Journal of Materials Science Letters, 1997, 16(2): 965-967. [52] 陈怡元,邹正光,龙 飞.碳源对自蔓延高温合成TiC粉末的影响[J].桂林工学院学报,2006,26(4):534-537. CHEN Y Y, ZOU Z G, LONG F. Effect of carbon sources on TiC powder by self-propagating high temperature synthesis[J]. Journal of Guilin University of Technology, 2006, 26(4): 534-537 (in Chinese). [53] 王金淑,周美玲,张久兴,等.自蔓延法制备TiC粉末的研究[J].北京工业大学学报,1998,24(3):29-33+43. WANG J S, ZHOU M L, ZHANG J X, et al. A study on titanium carbide produced by combustion synthesis[J]. Journal of Beijing Polytechnic University, 1998, 24(3): 29-33+43 (in Chinese). [54] 贾丽改,熊代余.冲击波方法合成TiC机理的研究[J].有色金属,2001(4):1-3. JIA L G, XIONG D Y. Mechanism of titanium carbide synthesis by shock-wave[J]. Nonferrous Metals, 2001(4): 1-3 (in Chinese). [55] 贾丽改,熊代余.冲击波方法合成TiC的影响因素[J].有色金属,2002(4):1-5. JIA L G, XIONG D Y. Influencing factors of TiC synthesis by shock wave[J]. Nonferrous Metals, 2002(4): 1-5 (in Chinese). [56] 尹 政,于雁武,刘玉存,等.爆炸径向冲击法制备碳化钛粉末的研究[J].火工品,2013(6):36-38. YIN Z, YU Y W, LIU Y C, et al. Study on preparation of titanium carbide powder by radial blast shock[J]. Initiators & Pyrotechnics, 2013(6): 36-38 (in Chinese). [57] 郭海明,舒武炳,乔生儒,等.化学气相沉积碳化钛的热力学和动力学研究[J].材料工程,1998,26(10):25-29. GUO H M, SHU W B, QIAO S R, et al. Thermodynamic and kinetic studies on chemical vapor deposition process of TiC[J]. Journal of Materials Engineering, 1998, 26(10): 25-29 (in Chinese). [58] 王坤杰,郭全贵,史景利,等.在位反应制备TiC涂层的动力学研究[J].材料工程,2007,35(s1):169-171. WANG K J, GUO Q G, SHI J L, et al. Study on kinetic properties of TiC coatings prepared by in situ reaction[J]. Journal of Materials Engineering, 2007, 35(s1): 169-171 (in Chinese). [59] CETINKAYA S, EROGLU S. Chemical vapor deposition of carbon on particulate TiO2 from CH4 and subsequent carbothermal reduction for the synthesis of nanocrystalline TiC powders[J]. Journal of the European Ceramic Society, 2011, 31(5): 869-876. [60] HARBUCK D D,张正德.气相法生产氮化钛和碳化钛粉[J].稀有金属材料与工程,1987,16(4):41-45. HARBUCK D D, ZHANG Z D. Gas phase production of titanium nitride and titanium carbide powder [J]. Rare Metal Materials and Engineering, 1987, 16(4): 41-45 (in Chinese). [61] TONG L R, REDDY R G. Synthesis of titanium carbide nano-powders by thermal plasma[J]. Scripta Materialia, 2005, 52(12): 1253-1258. [62] 于瀛秀,董星龙,薛方红,等.碳包覆碳化钛壳/核型纳米材料制备及其电催化性能[J].纳米科技,2013:59-63. YU Y X, DONG X L, XUE F H, et al. Preparation and electrocatalysis of carbon-coated titanium carbide core-shell nanoparticles[J]. Nanoscience and nanotechnology, 2013(1): 59-63 (in Chinese). [63] SUSLICK K S, MCNAMARA W B, DIDENKO Y. Hot spot conditions during multi-bubble cavitation sonochemistry and sonoluminescence, 1999: 524: 191-204. [64] SIVASANKARAN S, KISHOR KUMAR M J. A novel sonochemical synthesis of nano-size silicon nitride and titanium carbide[J]. Ceramics International, 2015, 41(9): 11301-11305. [65] FENG X, BAI Y J, LÜ B, et al. Easy synthesis of TiC nanocrystallite[J]. Journal of Crystal Growth, 2004, 264(1/2/3): 316-319. |
[1] | 金源, 徐嘉宾, 孙登田, 陈明旭, 黄永波, 芦令超, 程新. 纳米二氧化硅对白水泥基3D打印材料结构变形、流变及力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1855-1862. |
[2] | 张超, 邓智聪, 汪智斌, 侯泽宇, 贾子健, 王香港, 贾鲁涛, 陈春, 孙正明, 张亚梅, 潘金龙. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1870-1878. |
[3] | 曹乾菲, 崔冬, 史晓晗, 万逸, 左晓宝, 赖建中. 湿度变化对交替3D打印试件微结构及力学性能的影响研究[J]. 硅酸盐通报, 2021, 40(6): 1879-1888. |
[4] | 崔聪聪, 李珊, 李伟, 包建勋, 张舸, 王功. 立体光固化3D打印成型碳化硅陶瓷的烧结特性[J]. 硅酸盐通报, 2021, 40(6): 1937-1942. |
[5] | 魏相霞, 解娅男. 高磁性能铁氧体的3D打印及其应用研究[J]. 硅酸盐通报, 2021, 40(6): 1972-1978. |
[6] | 许海铭, 许晓明, 牛贺洋, 许鸽龙, 蔡基伟, 田青. 基于骨料-浆体两相组成的混凝土细观结构定量研究[J]. 硅酸盐通报, 2021, 40(6): 2011-2018. |
[7] | 刘虎林, 王昭, 伍媛婷, 任思谦, 王巍, 韩桂英. 固硫灰渣的基本特性及其作水泥混合材的关键问题研究进展[J]. 硅酸盐通报, 2021, 40(6): 2052-2061. |
[8] | 王冬丽, 杨策, 潘慧敏, 李通, 迟亚奥, 徐泽华. 水泥基材料孔结构与吸水性能关系研究进展[J]. 硅酸盐通报, 2021, 40(5): 1420-1428. |
[9] | 陈俊松, 王伟, 乔敏, 赵爽, 曾鲁平. 高岩温对喷射混凝土性能影响研究进展[J]. 硅酸盐通报, 2021, 40(5): 1441-1452. |
[10] | 冯庆革, 梁思亮, 杨义, 柏秀奎, 王东波, 赵政术, 黄丽霖. FeS与TiO2共存对水泥熟料中Ti的固化与迁移及矿物组成的影响[J]. 硅酸盐通报, 2021, 40(5): 1453-1461. |
[11] | 陈志武. 饱和面干再生细骨料对超高性能混凝土流动度及强度的影响[J]. 硅酸盐通报, 2021, 40(5): 1503-1509. |
[12] | 田建冬, 陆隆源. 基于均匀设计试验法石材废粉再利用研究[J]. 硅酸盐通报, 2021, 40(5): 1536-1544. |
[13] | 刘盼, 常成功, 刘秀泉, 董金美, 郑卫新, 肖学英, 文静. 粉煤灰掺量对氯氧镁水泥混凝土物理力学性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1564-1572. |
[14] | 韩康, 管学茂, 王燕峰, 刘松辉, 李一凡. 加压水溶液法制备工艺对α型高强石膏性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1620-1630. |
[15] | 张爱菊, 李子成, 冯婧, 李志宏. 金刚石增强Na2O-B2O3-Al2O3-SiO2系陶瓷基复合材料的界面研究[J]. 硅酸盐通报, 2021, 40(5): 1666-1671. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||