[1] 吴建锋,宋谋胜,徐晓虹,等.电解锰渣的综合利用进展与研究展望[J].环境工程学报,2014,8(7):2645-2652. WU J F, SONG M S, XU X H, et al. Prospects and advances of comprehensive utilization of electrolytic manganese residue[J]. Chinese Journal of Environmental Engineering, 2014, 8(7): 2645-2652 (in Chinese). [2] 王家伟.电解锰渣预处理除氨硫锰的研究[J].矿产综合利用,2018(1):115-118. WANG J W. Research on the removal of ammonia sulphur and manganese from manganese tailing slag by pretreatment[J]. Multipurpose Utilization of Mineral Resources, 2018(1): 115-118 (in Chinese). [3] CANUTO F A B, GARCIA C A B, ALVES J P H, et al. Mobility and ecological risk assessment of trace metals in polluted estuarine sediments using a sequential extraction scheme[J]. Environmental Monitoring and Assessment, 2013, 185(7): 6173-6185. [4] 林明跃,崔葵馨,肖 飞,等.电解锰压滤渣高温脱硫活化制备水泥混合材的研究[J].硅酸盐通报,2015,34(3):688-693. LIN M Y, CUI K X, XIAO F, et al. Research on preparation of cement additives from electrolytic manganese slag through high-temperature desulfurization and activation[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(3): 688-693 (in Chinese). [5] 张金龙,彭 兵,柴立元,等.电解锰渣-页岩-粉煤灰烧结砖的研制[J].环境科学与技术,2011,34(1):144-147. ZHANG J L, PENG B, CHAI L Y, et al. Sintering of electrolysis manganese slag-shale-coal ash for brick[J]. Environmental Science & Technology, 2011, 34(1): 144-147 (in Chinese). [6] 胡超超,王里奥,詹欣源,等.城市生活垃圾焚烧飞灰与电解锰渣烧制陶粒[J].环境工程学报,2019,13(1):177-185. HU C C, WANG L A, ZHAN X Y, et al. Preparation of ceramsite with MSWI fly ash and electrolytic manganese residues[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 177-185 (in Chinese). [7] 孙 朋,李佳欣,吕 莹,等.碱热预处理电解锰渣对制备地质聚合物的影响[J].硅酸盐通报,2019,38(12):3746-3751. SUN P, LI J X, LYU Y, et al. Effect of alkaline-roasting treatment of electrolytic manganese residue on preparation of geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3746-3751 (in Chinese). [8] 郭盼盼,张云升,范建平,等.免烧锰渣砖的配合比设计、制备与性能研究[J].硅酸盐通报,2013,32(5):786-793. GUO P P, ZHANG Y S, FAN J P, et al. Mixture ratio design, preparation and performance of non-burnt manganese slag brick[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(5): 786-793 (in Chinese). [9] XUE F, WANG T, ZHOU M, et al. Self-solidification/stabilisation of electrolytic manganese residue: mechanistic insights[J]. Construction and Building Materials, 2020, 255: 118971. [10] 杜 兵,但智钢,肖 轲,等.稳定剂对电解锰废渣中高浓度可溶性锰稳定效果的影响[J].中国环境科学,2015,35(4):1088-1095. DU B, DAN Z G, XIAO K, et al. Effects of different reagents on the stabilization of soluble manganese from electrolytic manganese solid waste[J]. China Environmental Science, 2015, 35(4): 1088-1095 (in Chinese). [11] 闫 蔚,曾柏淋,孟 江,等.石膏红外图谱鉴定研究[J].光谱学与光谱分析,2016,36(7):2098. YAN W, ZENG B L, MENG J, et al. Study on the identification of gypsum fibrosum with FTIR[J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2098 (in Chinese). [12] SHU J C, CHEN M J, WU H P, et al. An innovative method for synergistic stabilization/solidification of Mn2+, NH+4-N, $PO^{3-}_{4}$ and F- in electrolytic manganese residue and phosphogypsum[J]. Journal of Hazardous Materials, 2019, 376: 212-222. [13] LECOMTE I, HENRIST C, LIÉGEOIS M, et al. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement[J]. Journal of the European Ceramic Society, 2006, 26(16): 3789-3797. [14] 金达莱,岳林海,徐铸德.球形碳酸钙复合物的红外、拉曼光谱分析研究[J].无机化学学报,2004,20(6):715-720+623. JIN D L, YUE L H, XU Z D. Infared and Raman analysis of spherical CaCO3 composite[J]. Chinese Journal of Inorganic Chemistry, 2004, 20(6): 715-720+623 (in Chinese). [15] CRETESCU I, HARJA M, TEODOSIU C, et al. Synthesis and characterisation of a binder cement replacement based on alkali activation of fly ash waste[J]. Process Safety and Environmental Protection, 2018, 119: 23-35. [16] 陈和生,孙振亚,邵景昌.八种不同来源二氧化硅的红外光谱特征研究[J].硅酸盐通报,2011,30(4):934-937. CHEN H S, SUN Z Y, SHAO J C. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 934-937 (in Chinese). [17] 黄兴亮,周胜波,梁小英,等.不同来源矿渣水化产物聚合度的FT-IR分析[J].水泥工程,2013(1):23-26. HUANG X L, ZHOU S B, LIANG X Y, et al. FT-IR analysis of polymerization degree of different origin slag[J]. Cement Engineering, 2013(1): 23-26 (in Chinese). [18] WANG Y G, GAO S, LIU X M, et al. Preparation of non-sintered permeable bricks using electrolytic manganese residue: environmental and NH3-N recovery benefits[J]. Journal of Hazardous Materials, 2019, 378: 120768. [19] 崔孝炜,倪 文,任 超.钢渣矿渣基全固废胶凝材料的水化反应机理[J].材料研究学报,2017,31(9):687-694. CUI X W, NI W, REN C. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag[J]. Chinese Journal of Materials Research, 2017, 31(9): 687-694 (in Chinese). [20] 王志娟,郭川川,宋远明,等.碳硫硅钙石和钙矾石的稳定性[J].硅酸盐学报,2016,44(2):292-298. WANG Z J, GUO C C, SONG Y M, et al. Stability of thaumasite and ettringite[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 292-298 (in Chinese). [21] COLLIER N C, LI X, BAI Y, et al. The effect of sulfate activation on the early age hydration of BFS:PC composite cement[J]. Journal of Nuclear Materials, 2015, 464: 128-134. [22] 赵虎腾,李远霞,谭德斌,等.电解锰渣的理化特性与物相转变研究[J].广东化工,2017,44(7):64-66. ZHAO H T, LI Y X, TAN D B, et al. Study on the physicochemical properties and phase transformation of electrolytic manganese residue[J]. Guangdong Chemical Industry, 2017, 44(7): 64-66 (in Chinese). [23] WANG Q, YAN P Y, HAN S. The influence of steel slag on the hydration of cement during the hydration process of complex binder[J]. Science China Technological Sciences, 2011, 54(2): 388-394. [24] 李坦平,周学忠,曾利群,等.电解锰渣的理化特征及其开发应用的研究[J].中国锰业,2006,24(2):13-16. LI T P, ZHOU X Z, ZENG L Q, et al. Physical-chemical characteristics of electrolysis manganese residue and its comprehensive utilization[J]. China’s Manganese Industry, 2006, 24(2): 13-16 (in Chinese). [25] 刘开伟,王爱国,孙道胜,等.硫酸盐侵蚀下钙矾石的形成和膨胀机理研究现状[J].硅酸盐通报,2016,35(12):4014-4019. LIU K W, WANG A G, SUN D S, et al. Recent progress of ettringite formation and its expansion mechanisms during sulfate attack[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4014-4019 (in Chinese). [26] 傅 博,程臻赟,何妍亭,等.矿渣对水泥石抗碳硫硅钙石型硫酸盐腐蚀性能的影响[J].硅酸盐通报,2020,39(2):471-476. FU B, CHENG Z Y, HE Y T, et al. Effect of slag on thaumasite sulfate attack resistance of cement paste[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 471-476 (in Chinese). [27] 钱觉时,余金城,孙化强,等.钙矾石的形成与作用[J].硅酸盐学报,2017,45(11):1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [28] 李 颖,吴保华,倪 文,等.矿渣-钢渣-石膏体系早期水化反应中的协同作用[J].东北大学学报(自然科学版),2020,41(4):581-586. LI Y, WU B H, NI W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 581-586 (in Chinese). [29] 吴 萌,姬永生,张领雷,等.石膏对碳硫硅钙石型硫酸盐破坏的影响[J].硅酸盐学报,2016,44(11):1571-1578. WU M, JI Y S, ZHANG L L, et al. Effect of gypsum on thaumasite form of sulfate attack[J]. Journal of the Chinese Ceramic Society, 2016, 44(11): 1571-1578 (in Chinese). [30] BARNETT S J, ADAM C D, JACKSON A R W. Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12·26H2O, and thaumasite, Ca3SiSO4CO3(OH)6·12H2O[J]. Journal of Materials Science, 2000, 35(16): 4109-4114. [31] 关 伟,吉芳英,陈晴空,等.水化硅酸钙的制备及磷回收性能表征[J].功能材料,2012,43(23):3286-3290. GUAN W, JI F Y, CHEN Q K, et al. Preparation and phosphorus recovery performance of calcium silicate hydrate[J]. Journal of Functional Materials, 2012, 43(23): 3286-3290 (in Chinese). [32] 周宏研,陈 平,赵艳荣,等.电解锰渣对热焖钢渣活性的硫酸盐激发[J].无机盐工业,2019,51(5):66-69. ZHOU H Y, CHEN P, ZHAO Y R, et al. Sulfate activation of electrolytic manganese residue on heat-stewed steel slag activity[J]. Inorganic Chemicals Industry, 2019, 51(5): 66-69 (in Chinese). [33] 王 智,郭清春,蒋小花,等.电解锰渣对粉煤灰火山灰活性的硫酸盐激发[J].非金属矿,2011,34(4):5-8. WANG Z, GUO Q C, JIANG X H, et al. Sulphate activating of electrolytic manganese residue to fly ash[J]. Non-Metallic Mines, 2011, 34(4): 5-8 (in Chinese). |