[1] RUTHERFORD P M, DUDAS M J, SAMEK R A. Environmental impacts of phosphogypsum[J]. Science of the Total Environment, 1994, 149(1/2): 1-38. [2] CÁNOVAS C R, MACÍAS F, PÉREZ-LÓPEZ R, et al. Valorization of wastes from the fertilizer industry: current status and future trends[J]. Journal of Cleaner Production, 2018, 174: 678-690. [3] RASHAD A M. Phosphogypsum as a construction material[J]. Journal of Cleaner Production, 2017, 166: 732-743. [4] TAYIBI H, CHOURA M, LÓPEZ F A, et al. Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management, 2009, 90(8): 2377-2386. [5] PAPASLIOTI E M, PÉREZ-LÓPEZ R, PARVIAINEN A, et al. Effects of seawater mixing on the mobility of trace elements in acid phosphogypsum leachates[J]. Marine Pollution Bulletin, 2018, 127: 695-703. [6] LÜTKE S F, OLIVEIRA M L S, SILVA L F O, et al. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry[J]. Chemosphere, 2020, 256: 127138. [7] JALALI J, GAUDIN P, CAPIAUX H, et al. Fate and transport of metal trace elements from phosphogypsum piles in Tunisia and their impact on soil bacteria and wild plants[J]. Ecotoxicology and Environmental Safety, 2019, 174: 12-25. [8] GRACIOLI B, ANGULSKI DA LUZ C, BEUTLER C S, et al. Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements[J]. Construction and Building Materials, 2020, 262: 119961. [9] ZHOU J, LI X Q, ZHAO Y, et al. Preparation of paper-free and fiber-free plasterboard with high strength using phosphogypsum[J]. Construction and Building Materials, 2020, 243: 118091. [10] SHEN Y, QIAN J S, CHAI J Q, et al. Calcium sulphoaluminate cements made with phosphogypsum: production issues and material properties[J]. Cement and Concrete Composites, 2014, 48: 67-74. [11] WU S, YAO X L, REN C Z, et al. Recycling phosphogypsum as a sole calcium oxide source in calcium sulfoaluminate cement and its environmental effects[J]. Journal of Environmental Management, 2020, 271: 110986. [12] TSIOKA M, VOUDRIAS E A. Comparison of alternative management methods for phosphogypsum waste using life cycle analysis[J]. Journal of Cleaner Production, 2020, 266: 121386. [13] WANG J M. Utilization effects and environmental risks of phosphogypsum in agriculture: a review[J]. Journal of Cleaner Production, 2020, 276: 123337. [14] 王小彬,闫 湘,李秀英,等.磷石膏农用的环境安全风险[J].中国农业科学,2019,52(2):293-311. WANG X B, YAN X, LI X Y, et al. Environmental risks for application of phosphogysum in agricultural soils in China[J]. Scientia Agricultura Sinica, 2019, 52(2): 293-311 (in Chinese). [15] HENTATI O, ABRANTES N, CAETANO A L, et al. Phosphogypsum as a soil fertilizer: ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants[J]. Journal of Hazardous Materials, 2015, 294: 80-89. [16] GORAI B, JANA R K, PREMCHAND. Characteristics and utilisation of copper slag: a review[J]. Resources, Conservation and Recycling, 2003, 39(4): 299-313. [17] MIKULA K, IZYDORCZYK G, SKRZYPCZAK D, et al. Value-added strategies for the sustainable handling, disposal, or value-added use of copper smelter and refinery wastes[J]. Journal of Hazardous Materials, 2021, 403: 123602. [18] GORDON R B. Production residues in copper technological cycles[J]. Resources, Conservation and Recycling, 2002, 36(2): 87-106. [19] PIATAK N M, PARSONS M B, SEAL R R. Characteristics and environmental aspects of slag: a review[J]. Applied Geochemistry, 2015, 57: 236-266. [20] ZHANG S H, ZHU N W, MAO F L, et al. A novel strategy for harmlessness and reduction of copper smelting slags by alkali disaggregation of fayalite (Fe2SiO4) coupling with acid leaching[J]. Journal of Hazardous Materials, 2021, 402: 123791. [21] SHEN Z, JIN F, O'CONNOR D, et al. Solidification/stabilization for soil remediation: an old technology with new vitality[J]. Environmental Science & Technology, 2019, 53(20): 11615-11617. [22] 田佳瑜,王海峰,尤晓宇,等.磷石膏激发预处理及其制备免烧建材的研究[J].硅酸盐通报,2020,39(12):3897-3904. TIAN J Y, WANG H F, YOU X Y, et al. Excitation pretreatment of phosphogypsum and preparation of non-burning building materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3897-3904 (in Chinese). [23] CHEN Q S, ZHANG Q L, QI C C, et al. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact[J]. Journal of Cleaner Production, 2018, 186: 418-429. [24] SHU J C, CHEN M J, WU H P, et al. An innovative method for synergistic stabilization/solidification of Mn2+, NH+4-N, $PO^{3-}_{4}$ and F- in electrolytic manganese residue and phosphogypsum[J]. Journal of Hazardous Materials, 2019, 376: 212-222. [25] DOUGLAS E, MAINWARING P R. Hydration and pozzolanic activity on nonferrous slags[J]. American Ceramic Society Bulletin, 1985, 64(5): 700-706. [26] BOCULLO V, VITOLA L, VAICIUKYNIENE D, et al. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash[J]. Materials Chemistry and Physics, 2021, 258: 123846. [27] LI Z, TANG L Y, ZHENG Y F, et al. Characterizing the mechanisms of lead immobilization via bioapatite and various clay minerals[J]. ACS Earth and Space Chemistry, 2017, 1(3): 152-157. [28] NAG M, SAFFARZADEH A, NOMICHI T, et al. Enhanced Pb and Zn stabilization in municipal solid waste incineration fly ash using waste fishbone hydroxyapatite[J]. Waste Management, 2020, 118: 281-290. [29] GONG S, LI X L, SONG F X, et al. Preparation and application in HDPE of nano-CaSO4 from phosphogypsum[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4511-4520. [30] XUE S G, LI M, JIANG J, et al. Phosphogypsum stabilization of bauxite residue: conversion of its alkaline characteristics[J]. Journal of Environmental Sciences, 2019, 77: 1-10. [31] MA W P, BROWN P W. Hydrothermal reactions of fly ash with Ca(OH)2 and CaSO4·2H2O[J]. Cement and Concrete Research, 1997, 27(8): 1237-1248. [32] AKULA P, LITTLE D N. Mineralogical characterization and thermodynamic modeling of synthesized ettringite from Ca-Al-SO4 suspensions[J]. Construction and Building Materials, 2021, 269: 121304. [33] CHEN W M, WANG F, LI Z, et al. A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement solidification and phosphate stabilization process[J]. Waste Management, 2020, 114: 107-114. [34] XIA W Y, DU Y J, LI F S, et al. Field evaluation of a new hydroxyapatite based binder for ex-situ solidification/stabilization of a heavy metal contaminated site soil around a Pb-Zn smelter[J]. Construction and Building Materials, 2019, 210: 278-288. |