[1] LI V C. High-performance and multifunctional cement-based composite material[J]. Engineering, 2019, 5(2): 250-260. [2] 姚运仕,刘欢建,任 峰,等.高性能混凝土振动搅拌试验研究[J].硅酸盐通报,2020,39(3):730-733. YAO Y S, LIU H J, REN F, et al. Experimental study on vibration mixing of high-performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 730-733 (in Chinese). [3] 黄耀英,蔡 忍,刘 钰,等.不同水胶比高性能混凝土内部自干燥与干湿循环影响试验[J].硅酸盐通报,2019,38(2):311-316. HUANG Y Y, CAI R, LIU Y, et al. Experiment on self-drying and dry-wet cycle of high performance concrete under different water-binder ratio[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 311-316 (in Chinese). [4] NORHASRI M S M, HAMIDAH M S, FADZIL A M. Applications of using nano material in concrete: a review[J]. Construction and Building Materials, 2017, 133: 91-97. [5] CHUAH S, PAN Z, SANJAYAN J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction and Building Materials, 2014, 73: 113-124. [6] MENG W N, KHAYAT K H. Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC[J]. Cement and Concrete Research, 2018, 105: 64-71. [7] WANG H, GAO X J, LIU J Z, et al. Multi-functional properties of carbon nanofiber reinforced reactive powder concrete[J]. Construction and Building Materials, 2018, 187: 699-707. [8] PEYVANDI A, SOROUSHIAN P, FARHADI N, et al. Evaluation of the reinforcement efficiency of low-cost graphite nanomaterials in high-performance concrete[J]. KSCE Journal of Civil Engineering, 2018, 22(10): 3875-3882. [9] JIANG S, ZHOU D C, ZHANG L Q, et al. Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 60-68. [10] ZHAO Z F, QI T Q, ZHOU W, et al. A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials[J]. Nanotechnology Reviews, 2020, 9(1): 303-322. [11] GEIM A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534. [12] 李丰恺.石墨烯研究进展[J].炭素技术,2016,35(1):66. LI F K. Research progress of graphene[J]. Carbon Techniques, 2016, 35(1): 66 (in Chinese). [13] 邹 鹏,石文荣,杨书华,等.石墨烯的化学气相沉积法制备及其表征[J].材料科学与工程学报,2014,32(2):264-267. ZOU P, SHI W R, YANG S H, et al. Preparation of graphene by chemical vapor deposition[J]. Journal of Materials Science and Engineering, 2014, 32(2): 264-267 (in Chinese). [14] 任文才,高力波,马来鹏,等.石墨烯的化学气相沉积法制备[J].新型炭材料,2011,26(1):71-80. REN W C, GAO L B, MA L P, et al. Preparation of graphene by chemical vapor deposition[J]. New Carbon Materials, 2011, 26(1): 71-80 (in Chinese). [15] 彭 博,陈梓钧,唐雁煌,等.石墨烯制备与改性的研究进展[J].塑料科技,2020,48(11):123-128. PENG B, CHEN Z J, TANG Y H, et al. Research progress of the preparation and modification of graphene[J]. Plastics Science and Technology, 2020, 48(11): 123-128 (in Chinese). [16] SEDAGHAT A, RAM M K, ZAYED A, et al. Investigation of physical properties of graphene-cement composite for structural applications[J]. Open Journal of Composite Materials, 2014, 4(1): 12-21. [17] CAO M L, ZHANG H X, ZHANG C. Effect of graphene on mechanical properties of cement mortars[J]. Journal of Central South University, 2016, 23(4): 919-925. [18] LI G, YUAN J B, ZHANG Y H, et al. Microstructure and mechanical performance of graphene reinforced cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 188-195. [19] DIMOV D, AMIT I, GORRIE O, et al. Ultrahigh performance nanoengineered graphene-concrete composites for multifunctional applications[J]. Advanced Functional Materials, 2018, 28(23): 1705183. [20] LI L W, ZHENG Q F, DONG S F, et al. The reinforcing effects and mechanisms of multi-layer graphenes on mechanical properties of reactive powder concrete[J]. Construction and Building Materials, 2020, 251: 118995. [21] 韩瑞杰,程忠庆,高 屹,等.多层石墨烯/钢纤维复合砂浆导电性能研究[J].硅酸盐通报,2020,39(1):34-40. HAN R J, CHENG Z Q, GAO Y, et al. Electrical conductivity of multilayer graphene/steel fiber composite mortar[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 34-40 (in Chinese). [22] RAO C N R, SUBRAHMANYAM K S, RAMAKRISHNA MATTE H S S, et al. Graphene: synthesis, functionalization and properties[J]. Modern Physics Letters B, 2011, 25(7): 427-451. [23] NOVOSELOV K S. Nobel lecture: graphene: materials in the flatland[J]. Reviews of Modern Physics, 2011, 83(3): 837. [24] LONG W J, LI H D, FANG C L, et al. Uniformly dispersed and Re-agglomerated graphene oxide-based cement pastes: a comparison of rheological properties, mechanical properties and microstructure[J]. Nanomaterials, 2018, 8(1): 31. [25] 黄宛真,杨 倩,叶晓丹,等.石墨烯层数的表征[J].材料导报,2012,26(7):26-30. HUANG W Z, YANG Q, YE X D, et al. Characterization of graphene layers[J]. Materials Review, 2012, 26(7): 26-30 (in Chinese). [26] 姚雅萱,任玲玲,高思田,等.石墨烯层数测量方法的研究进展[J].化学通报,2015,78(2):100-106. YAO Y X, REN L L, GAO S T, et al. Progress in measuremental methods for layer numbers of graphene[J]. Chemistry, 2015, 78(2): 100-106 (in Chinese). [27] BLAKE P, HILL E W, CASTRO NETO A H, et al. Making graphene visible[J]. Applied Physics Letters, 2007, 91(6): 063124. [28] NI Z H, WANG H M, KASIM J, et al. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano Letters, 2007, 7(9): 2758-2763. [29] HUANG W, LIU Z F, YANG Z Y. Top or underneath? Revealing the structure of multilayer graphene domains with atomic force microscopy and theoretical analysis[J]. Carbon, 2016, 99: 131-137. [30] YOON D, MOON H, CHEONG H, et al. Variations in the Raman spectrum as a function of the number of graphene layers[J]. Journal of the Korean Physical Society, 2009, 55(3(2)): 1299-1303. [31] SILVA D L, CAMPOS J L E, FERNANDES T F D, et al. Raman spectroscopy analysis of number of layers in mass-produced graphene flakes[J]. Carbon, 2020, 161: 181-189. [32] MATALKAH F, SOROUSHIAN P. Graphene nanoplatelet for enhancement the mechanical properties and durability characteristics of alkali activated binder[J]. Construction and Building Materials, 2020, 249: 118773. [33] KONG L J, DU Y B. Interfacial interaction of aggregate-cement paste in concrete[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2015, 30(1): 117-121. [34] 陈立军,王永平,尹新生,等.混凝土孔径尺寸对其抗渗性的影响[J].硅酸盐学报,2005,33(4):500-505. CHEN L J, WANG Y P, YIN X S, et al. Effect of aperture size on impermeability of concrete[J]. Journal of the Chinese Ceramic Society, 2005, 33(4): 500-505 (in Chinese). [35] ZHUANG Y Z, LIANG Y N, NABIZADEH A, et al. Influence of the moisture state of recycled fine aggregate on the impermeability of concrete[J]. Materials Testing, 2019, 61(10): 991-998. [36] MADHAVI T, ANNAMALAI S. Electrical conductivity of concrete[J]. ARPN Journal of Engineering and Applied Sciences, 2016, 11(9): 5979-5982. |