[1] JÉGOUREL Y. The global iron ore market: from cyclical developments to potential structural changes[J]. The Extractive Industries and Society, 2020, 7(3): 1128-1134. [2] SUN Y S, ZHU X R, HAN Y X, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: a pilot-scale study[J]. Journal of Cleaner Production, 2020, 261: 121221. [3] JIANG H D, HAO W T, XU Q Y, et al. Socio-economic and environmental impacts of the iron ore resource tax reform in China: a CGE-based analysis[J]. Resources Policy, 2020, 68: 101775. [4] 韩跃新,孙永升,李艳军,等.我国铁矿选矿技术最新进展[J].金属矿山,2015(2):1-11. HAN Y X, SUN Y S, LI Y J, et al. New development on mineral processing technology of iron ore resources in China[J]. Metal Mine, 2015(2): 1-11 (in Chinese). [5] QIU T S, WU C Y, AI G H, et al. Effects of multi-stage grinding process and grinding fineness on desulfurization separation of high-sulfurous iron ore[J]. Procedia Engineering, 2015, 102: 722-730. [6] KOHLS E, ZMICH R, HEINZEL C, et al. Residual stress change in multistage grinding[J]. Procedia CIRP, 2020, 87: 186-191. [7] REICHERT M, GEROLD C, FREDRIKSSON A, et al. Research of iron ore grinding in a vertical-roller-mill[J]. Minerals Engineering, 2015, 73: 109-115. [8] LITTLE L, MAINZA A N, BECKER M, et al. Fine grinding: how mill type affects particle shape characteristics and mineral liberation[J]. Minerals Engineering, 2017, 111: 148-157. [9] 肖庆飞,康怀斌,肖 珲,等.碎磨技术的研究进展及其应用[J].铜业工程,2016(1):15-27. XIAO Q F, KANG H B, XIAO H, et al. Research progresses and applications of crushing and grinding technology[J]. Copper Engineering, 2016(1): 15-27 (in Chinese). [10] 王明星,李艳军,刘金长,等.黑沟铁矿石粉矿(-15 mm)棒磨磨矿工艺试验[J].金属矿山,2016(12):89-93. WANG M X, LI Y J, LIU J Z, et al. Research on rod-grinding technology of Heigou iron ore fines (-15 mm)[J]. Metal Mine, 2016(12): 89-93 (in Chinese). [11] XIAO X, ZHANG G W, FENG Q M, et al. The liberation effect of magnetite fine ground by vertical stirred mill and ball mill[J]. Minerals Engineering, 2012, 34: 63-69. [12] 王 磊,郑纪民,齐加刚,等.海王精细分级旋流器在某特大型铁矿细粒磨矿分级工艺中的应用[J].现代矿业,2017,33(11):175-176+191. WANG L, ZHENG J M, QI J G, et al. Application of neptune fine classification cyclone in fine grain grinding and classification process of a super large iron ore[J]. Modern Mining, 2017, 33(11): 175-176+191 (in Chinese). [13] 何廷树,郭高巍,王宇斌,等.正交试验在白云母超细磨中的应用[J].非金属矿,2015,38(2):43-45. HE T S, GUO G W, WANG Y B, et al. The application of orthogonal test in ultra-fine grinding of muscovite[J]. Non-Metallic Mines, 2015, 38(2): 43-45 (in Chinese). [14] 刘吉顺,杨丽荣.湿式球磨机磨矿效率影响因素正交试验与分析[J].矿业研究与开发,2020,40(5):149-153. LIU J S, YANG L R. Analysis on the factors affecting the grinding efficiency of wet ball mill by orthogonal experiment method[J]. Mining Research and Development, 2020, 40(5): 149-153 (in Chinese). [15] EBADNEJAD A. Investigating of the effect of ore work index and particle size on the grinding modeling of some copper sulphide ores[J]. Journal of Materials Research and Technology, 2016, 5(2): 101-110. [16] EBADNEJAD A, KARIMI G R, DEHGHANI H. Application of response surface methodology for modeling of ball mills in copper sulphide ore grinding[J]. Powder Technology, 2013, 245: 292-296. [17] 马 帅,肖庆飞,杨 森,等.响应曲面优化某铜矿细磨中间粒级含量试验研究[J].硅酸盐通报,2020,39(7):2184-2189+2203. MA S, XIAO Q F, YANG S, et al. Experimental study on optimization of finely grinded intermediate grain size content of a copper ore by response surface[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2184-2189+2203 (in Chinese). [18] XIA S X, LIN R, CUI X, et al. The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11380-11390. [19] WANG B H, LIN R, LIU D C, et al. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13737-13743. [20] DIXIT P, TIWARI R, MUKHERJEE A K, et al. Application of response surface methodology for modeling and optimization of spiral separator for processing of iron ore slime[J]. Powder Technology, 2015, 275: 105-112. [21] ZAINOODIN A M, KAMARUDIN S K, MASDAR M S, et al. Optimization of a porous carbon nanofiber layer for the membrane electrode assembly in DMFC[J]. Energy Conversion and Management, 2015, 101: 525-531. |