[1] SUMARAC D, KRASULJA M. Damage of plain concrete due to thermal incompatibility of its phases[J]. International Journal of Damage Mechanics, 1998, 7(2): 129-142. [2] 李清海,姚 燕.热循环对水泥基材料抗压强度的影响及机理研究(英文)[J].硅酸盐学报,2006,34(10):1287-1289. LI Q H, YAO Y. Influence of thermal cycles on the compressive strength of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2006, 34(10): 1287-1289. [3] CHEN L Z, YAO J T, ZHANG G T. Flexural properties of lithium slag concrete beams subjected to loading and thermal-cold cycles[J]. KSCE Journal of Civil Engineering, 2019, 23(2): 624-631. [4] 冀晓东,宋玉普.冻融循环后光圆钢筋与混凝土粘结性能退化机理研究[J].建筑结构学报,2011,32(1):70-74. JI X D, SONG Y P. Mechanism of bond degradation between concrete and plain steel bar after freezing and thawing[J]. Journal of Building Structures, 2011, 32(1): 70-74 (in Chinese). [5] 冀晓东,赵 宁,宋玉普.冻融循环作用后变形钢筋与混凝土粘结性能退化研究[J].工业建筑,2010,40(1):87-91. JI X D, ZHAO N, SONG Y P. Experimental study on bond behavior’s deterioration between deformed steel bar and concrete after freezing and thawing[J]. Industrial Construction, 2010, 40(1): 87-91 (in Chinese). [6] 李 磊,王卓涵,张艺欣,等.冻融损伤钢筋混凝土构件黏结滑移本构模型研究[J/OL].建筑结构学报:1-10[2020-10-12].https://doi.org/10.14006/j.jzjgxb.2019.0415. LI L, WANG Z H, ZHANG Y X, et al. Bond slip model adapted for reinforced concrete members subjected to freeze-thaw damage[J/OL]. Journal of Building Structures: 1-10[2020-10-12]. https://doi.org/10.14006/j.jzjgxb.2019.0415 (in Chinese). [7] FAGERLUND G, SOMERVILLE G, JEPPSON J. Manual for assessing concrete structures affected by frost[M]. Lund Sweden, Lund Institute of Technology, 2001. [8] PETERSEN L, LOHAUS L, POLAK M A. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements[J]. ACI Materials Journal, 2007, 104(4): 369-378. [9] XU S H, LI A B, WANG H. Bond properties for deformed steel bar in frost-damaged concrete under monotonic and reversed cyclic loading[J]. Construction and Building Materials, 2017, 148: 344-358. [10] 李 一,张广泰,田虎学,等.锂渣聚丙烯纤维混凝土基本力学性能试验[J].河南科技大学学报(自然科学版),2016,37(4):60-65+7. LI Y, ZHANG G T, TIAN H X, et al. Basic mechanical properties experiment on lithium slag polypropylene fiber reinforced concrete[J]. Journal of Henan University of Science & Technology (Natural Science), 2016, 37(4): 60-65+7 (in Chinese). [11] 张广泰,田虎学,李宝元,等.钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J].材料导报,2018,32(14):2396-2399+2406. ZHANG G T, TIAN H X, LI B Y, et al. Deicer-frost scaling of steel-polypropylene hybrid fiber reinforced concrete[J]. Materials Review, 2018, 32(14): 2396-2399+2406 (in Chinese). [12] 陈克凡,乔宏霞,王鹏辉,等.温度循环退化模型的橡胶混凝土可靠寿命预估[J].华中科技大学学报(自然科学版),2020,48(2):42-46. CHEN K F, QIAO H X, WANG P H, et al. Reliable life prediction of rubber concrete based on temperature cycle degradation model[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(2): 42-46 (in Chinese). [13] AL RIKABI F T, SARGAND S M, KHOURY I, et al. Material properties of synthetic fiber-reinforced concrete under freeze-thaw conditions[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018090. [14] POWERS T C. A working hypothesis for further studies of frost resistance of concrete[J]. ACI Journal Proceedings, 1945, 41(1): 245-297. [15] POWERS T E, HELLNUTH R A. Theory of volume changes in hardened cement paste during freezing[J]. Proceeding of the Highway Research Board, 1953, 32: 285- 297. [16] 董 祥,沈 正.纤维品种和掺量对混凝土抗冻性及微观结构的影响[J].南京林业大学学报(自然科学版),2010,34(5):91-95. DONG X, SHEN Z. Effects of fiber types and contents on frost resistance of concrete and their microstructure[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(5): 91-95 (in Chinese). [17] 王晨飞,牛荻涛.纤维混凝土在盐冻作用下的耐久性研究[J].工业建筑,2012,42(1):137-139+153. WANG C F, NIU D T. Research on the durability of polypropylene fiber concrete under freeze-thaw damage[J]. Industrial Construction, 2012, 42(1): 137-139+153 (in Chinese). [18] CHAO S H, NAAMAN A E, PARRA-MONTESINOS G J. Bond behavior of reinforcing bars in tensile strain-hardening fiber-reinforced cement composites[J]. ACI Structural Journal, 2009, 106(6): 897-906. [19] JIANG C, WU Y F, DAI M J. Degradation of steel-to-concrete bond due to corrosion[J]. Construction and Building Materials, 2018, 158: 1073-1080. [20] WU Y F, ZHAO X M. Unified bond stress-slip model for reinforced concrete[J]. Journal of Structural Engineering, 2013, 139(11): 1951-1962. [21] 雷 刚.Weibull分布寿命数据的参数估计[D].武汉:华中科技大学,2006. LEI G. Parameter estimation of Weibull distribution life data[D]. Wuhan: Huazhong University of Science and Technology, 2006 (in Chinese). [22] 乔宏霞,郭向柯,朱彬荣.三参数Weibull分布的多因素作用下混凝土加速寿命试验[J].材料导报,2019,33(4):639-643. QIAO H X, GUO X K, ZHU B R. Accelerated life test of concrete under multiple factors based on three-parameter Weibull distribution[J]. Materials Review, 2019, 33(4): 639-643 (in Chinese). [23] 高 峰,熊 信,周科平,等.冻融循环作用下饱水砂岩的强度劣化模型[J].岩土力学,2019,40(3):926-932. GAO F, XIONG X, ZHOU K P, et al. Strength deterioration model of saturated sandstone under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(3): 926-932 (in Chinese). |