欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (3): 829-835.

• 水泥混凝土 • 上一篇    下一篇

基于随机森林和支持向量机的高性能混凝土抗渗性预测研究

吴贤国1, 刘茜1, 王洪涛2, 陈虹宇3, 高飞4, 黄汉洋4   

  1. 1.华中科技大学土木与水利工程学院,武汉 430074;
    2.中建三局集团有限公司,武汉 430000;
    3.南洋理工大学土木工程与环境学院,新加坡 639798;
    4.中建商品混凝土有限公司,武汉 430000
  • 收稿日期:2020-09-25 修回日期:2020-12-19 出版日期:2021-03-15 发布日期:2021-04-13
  • 通讯作者: 刘 茜,硕士研究生。E-mail:870852150@qq.com
  • 作者简介:吴贤国(1964—),女,教授。主要从事土木工程施工及管理方面的研究。E-mail:wxg0220@126.com
  • 基金资助:
    国家重点研发项目(2016YFC0800208);国家自然科学基金(51378235,71571078,51308240)

Prediction of Impermeability of Concrete Based on Random Forest and Support Vector Machine

WU Xianguo1, LIU Xi1, WANG Hongtao2, CHEN Hongyu3, GAO Fei4, HUANG Hanyang4   

  1. 1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. China Construction Third Engineering Bureau Co., Ltd., Wuhan 430000, China;
    3. School of Civil Engineering and Environment, Nanyang Technological University, Singapore 639798, Singapore;
    4. China Construction Commercial Concrete Co., Ltd., Wuhan 430000, China
  • Received:2020-09-25 Revised:2020-12-19 Online:2021-03-15 Published:2021-04-13

摘要: 为了实现对混凝土抗渗性快速而精确地预测,提出了一种基于随机森林(RF)和支持向量机(SVM)的RF-SVM预测模型。首先以氯离子渗透系数为抗渗性评价指标,基于原材料配比确定了混凝土抗渗性的初始指标体系,然后利用随机森林算法结合后向剔除法进行指标筛选,剔除了冗余指标,得到了用于支持向量机建模的最优指标集,最后在此基础上建立了基于支持向量机的混凝土抗渗性预测模型,并研发了RF-SVM算法。以东北某高速公路项目为背景进行应用分析,结果表明,所提出的RF-SVM模型能够有效筛除冗余因素,得到精度较高的预测结果,且预测结果满足工程实践的要求,能够为混凝土抗渗性预测提供一种快速有效的方法。

关键词: 混凝土, 抗渗性, 预测, 随机森林, 支持向量机, 指标筛选

Abstract: In order to predict the impermeability of concrete quickly and accurately, a RF-SVM prediction model based on random forest (RF) and support vector machine (SVM) was proposed. At first, the permeability coefficient of chloride ion was taken as the evaluation index of impermeability, the initial index system of concrete impermeability was determined based on the ratio of raw materials.Then, the random forest algorithm combined with backward elimination method was used to screen the indexes, and the redundant indexes were eliminated, and the optimal set of indexes for support vector machine modeling was obtained. Finally, a prediction model of concrete impermeability based on support vector machine was established, and a RF-SVM algorithm was developed. Based on a highway project in northeast China, the results show that the proposed RF-SVM model effectively screens out the redundant factors and obtains high precision prediction results, which meets the requirements of engineering practice, and provides a fast and effective method for predicting the impermeability of concrete.

Key words: concrete, impermeability, prediction, random forest, support vector machine, index selection

中图分类号: