[1] LI P, WANG J J, PENG T, et al. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI)[J]. Applied Surface Science, 2019, 483: 670-676. [2] DING L, YANG S R, LIANG Z Q, et al. TiO2 nanobelts with anatase/rutile heterophase junctions for highly efficient photocatalytic overall water splitting[J]. Journal of Colloid and Interface Science, 2020, 567: 181-189. [3] 张小伟,沈为民,黄 杰,等.掺杂Fe3+的TiO2电子结构及光学特性研究[J].硅酸盐通报,2014,33(4):934-939. ZHANG X W, SHEN W M, HUANG J, et al. Study on electronic structure and optical property of TiO2 doped with Fe3+[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(4): 934-939 (in Chinese). [4] LI X, PI Y, HOU Q, et al. Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity[J]. Chemical Communications (Cambridge, England), 2018, 54(15): 1917-1920. [5] SHENG H, CHEN D, LI N, et al. Urchin-inspired TiO2@MIL-101 double-shell hollow particles: adsorption and highly efficient photocatalytic degradation of hydrogen sulfide[J]. Chemistry of Materials, 2017, 29(13): 5612-5616. [6] ZENG X, HUANG L Q, WANG C N, et al. Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20274-20282. [7] CHAKRABORTY A, ISLAM D A, ACHARYA H. Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation[J]. Journal of Solid State Chemistry, 2019, 269: 566-574. [8] HU M Q, LOU H, YAN X L, et al. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue[J]. Microporous and Mesoporous Materials, 2018, 271: 68-72. [9] IBRAHIM A, MEKPRASART W, PECHARAPA W. Anatase/rutile TiO2 composite prepared via sonochemical process and their photocatalytic activity[J]. Materials Today: Proceedings, 2017, 4(5): 6159-6165. [10] KUANG J Y, XING Z P, YIN J W, et al. Ti3+ self-doped rutile/anatase/TiO2(B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts[J]. Arabian Journal of Chemistry, 2020, 13(1): 2568-2578. [11] ÖKTE A N, KARAMANIS D, CHALKIA E, et al. The effect of ZnO or TiO2 loaded nanoparticles on the adsorption and photocatalytic performance of Cu-BTC and ZIF-8 MOFs[J]. Materials Chemistry and Physics, 2017, 187: 5-10. [12] RAMASUBBU V, KUMAR P R, MOTHI E M, et al. Highly interconnected porous TiO2-Ni-MOF composite aerogel photoanodes for high power conversion efficiency in quasi-solid dye-sensitized solar cells[J]. Applied Surface Science, 2019, 496: 143646. [13] CHANG C W, KAO Y H, SHEN P H, et al. Nanoconfinement of metal oxide MgO and ZnO in zeolitic imidazolate framework ZIF-8 for CO2 adsorption and regeneration[J]. Journal of Hazardous Materials, 2020, 400: 122974. [14] ZHANG M, SHANG Q G, WAN Y Q, et al. Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation[J]. Applied Catalysis B: Environmental, 2019, 241: 149-158. [15] FAZAELI R, ALIYAN H. Novel hierarchical TiO2@ZIF-8 for photodecolorization of semi-real sample bromothymol blue aqueous solution[J]. Journal of the Iranian Chemical Society, 2019, 16(1): 1-9. [16] JAPIP S, ERIFIN S, CHUNG T S. Reduced thermal rearrangement temperature via formation of zeolitic imidazolate framework (ZIF)-8-based nanocomposites for hydrogen purification[J]. Separation and Purification Technology, 2019, 212: 965-973. [17] WANG H T, LIU Y P, ZHANG H, et al. Design and synthesis of porous C-ZnO/TiO2@ZIF-8 multi-component nano-system via pyrolysis strategy with high adsorption capacity and visible light photocatalytic activity[J]. Microporous and Mesoporous Materials, 2019, 288: 109548. [18] PAPAEFTHIMIOU V, DINTZER T, LEBEDEVA M, et al. Probing metal-support interaction in reactive environments: an in situ study of PtCo bimetallic nanoparticles supported on TiO2[J]. The Journal of Physical Chemistry C, 2012, 116(27): 14342-14349. [19] HOU X B, STANLEY S L, ZHAO M, et al. MOF-based C-doped coupled TiO2/ZnO nanofibrous membrane with crossed network connection for enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2019, 777: 982-990. [20] SANTOSO E, EDIATI R, ISTIQOMAH Z, et al. Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue[J]. Microporous and Mesoporous Materials, 2021, 310: 110620. [21] ZHAO Y J, LIU Y, CAO J J, et al. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent[J]. Applied Catalysis B: Environmental, 2020, 278: 119289. [22] CHU R R, SONG H W, ULLAH Z, et al. ZIF-8 derived nitrogen-doped carbon composites boost the rate performance of organic cathodes for sodium ion batteries[J]. Electrochimica Acta, 2020, 362: 137115. [23] CHEN P Y, HE M, CHEN B B, et al. Size- and dose-dependent cytotoxicity of ZIF-8 based on single cell analysis[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111110. [24] RAHMAN K H, KAR A K. Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2 p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104181. [25] DAS D, MAKAL P. Narrow band gap reduced TiO2-B: cu nanowire heterostructures for efficient visible light absorption, charge separation and photocatalytic degradation[J]. Applied Surface Science, 2020, 506: 144880. [26] ISLAM M N, PODDER J. The role of Al and Co co-doping on the band gap tuning of TiO2 thin films for applications in photovoltaic and optoelectronic devices[J]. Materials Science in Semiconductor Processing, 2021, 121: 105419. [27] NAGARAJ G, DHAYAL R A, ALBERT I A. Tuning the optical band gap of pure TiO2 via photon induced method[J]. Optik, 2019, 179: 889-894. [28] KUMAR A, MONDAL S, KOTESWARA RAO K S R. Experimental evidences of charge transition levels in ZrO2 and at the Si∶ZrO2 interface by deep level transient spectroscopy[J]. Applied Physics Letters, 2017, 110(13): 132904. [29] DA TRINDADE L G, BORBA K M N, TRENCH A B, et al. Effective strategy to coupling Zr-MOF/ZnO: synthesis, morphology and photoelectrochemical properties evaluation[J]. Journal of Solid State Chemistry, 2021, 293: 121794. [30] QIN R, MENG F M, KHAN M W, et al. Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts[J]. Materials Letters, 2019, 240: 84-87. [31] 李 石,杜聪聪,赵东风,等.三维有序大孔Fe/N/TiO2复合型光催化剂制备及光催化性能研究[J].硅酸盐通报,2014,33(9):2176-2179+2185. LI S, DU C C, ZHAO D F, et al. Preparation of three-dimensionally ordered macroporous Fe/N/TiO2 and its photocatalytic ability[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(9): 2176-2179+2185 (in Chinese). [32] CHAUDHARI A K, RYDER M R, TAN J C. Photonic hybrid crystals constructed from in situ host-guest nanoconfinement of a light-emitting complex in metal-organic framework pores[J]. Nanoscale, 2016, 8(12): 6851-6859. [33] HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408. [34] HUANG Z F, DONG P M, ZHANG Y Z, et al. A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction[J]. Journal of CO2 Utilization, 2018, 24: 369-375. [35] 席耀辉,王海龙,闫 宁,等.TiO2修饰BDD复合电极材料的制备及性能[J].硅酸盐学报,2018,46(3):322-327. XI Y H, WANG H L, YAN N, et al. Preparation and properties of TiO2 modified BDD composite electrode[J]. Journal of the Chinese Ceramic Society, 2018, 46(3): 322-327 (in Chinese). |