[1] LI F, ZHOU S Q, DU Y C, et al. Experimental study on heat-reflective epoxy coatings containing nano-TiO2 for asphalt pavement resistance to high-temperature diseases and CO/HC emissions[J]. Journal of Testing and Evaluation, 2019, 47(4): 2765-2775. [2] 郭寅川, 陈乔森, 申爱琴, 等. 低标号沥青在新疆高温抗车辙地区的应用研究[J]. 硅酸盐通报, 2018, 37(10): 3042-3048. GUO Y C, CHEN Q S, SHEN A Q, et al. Study of low grade asphalt in high temperature anti-rutting area in Xinjiang[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3042-3048 (in Chinese). [3] 邵 华. 西藏大温差地区沥青路面结构适应性与耐久性探讨[J]. 中国公路, 2023(16): 185-187. SHAO H. Discussion on structural adaptability and durability of asphalt pavement in large temperature difference area of Xizang[J]. China Highway, 2023(16): 185-187 (in Chinese). [4] 蒋应军, 上官宇浩, 李启龙, 等. 彩色热反射喷涂材料路用性能[J]. 硅酸盐通报, 2020, 39(4): 1324-1330. JIANG Y J, SHANGGUAN Y H, LI Q L, et al. Road performance of color thermal reflection spraying materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1324-1330 (in Chinese). [5] 王 宁. 遮热式路面性能及施工工艺[J]. 交通世界, 2023(15): 90-92. WANG N. Performance and construction technology of heat-shielding pavement[J]. Transpo World, 2023(15): 90-92 (in Chinese). [6] 陈玉静, 沙爱民, 胡 魁, 等. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325. CHEN Y J, SHA A M, HU K, et al. Preparation and performance of pavement heat-shielding coating for Qinghai-Tibet area[J]. Materials Reports, 2019, 33(14): 2319-2325 (in Chinese). [7] 张 楠, 范群保, 郑南翔. 气孔玄武岩超薄罩面沥青路面降温效果和性能研究[J]. 硅酸盐通报, 2021, 40(10): 3523-3532. ZHANG N, FAN Q B, ZHENG N X. Temperature reduction and performance of asphalt pavement with stomatal basalt ultra-thin overlay[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3523-3532 (in Chinese). [8] 李渊沅. 煅烧铝矾石热阻式沥青混合料性能研究[D]. 长沙: 长沙理工大学, 2014. LI Y Y. Study on properties of calcined alumite thermal resistance asphalt mixture[D]. Changsha: Changsha University of Science & Technology, 2014 (in Chinese). [9] 杨凤雷. 蛭石在热阻路面中的应用研究[D]. 西安: 长安大学, 2015. YANG F L. Study on application of vermiculite in thermal resistance pavement[D]. Xi’an: Changan University, 2015 (in Chinese). [10] 高志伟, 刘鲁清, 肖绪荡, 等. 热阻沥青混合料研究进展[J]. 长安大学学报(自然科学版), 2020, 40(1): 125-134. GAO Z W, LIU L Q, XIAO X D, et al. Research progress of thermal resistance asphalt mixture[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(1): 125-134 (in Chinese). [11] LIU Y F, HUANG Y C, SUN W J, et al. Effect of coarse aggregate morphology on the mechanical properties of stone matrix asphalt[J]. Construction and Building Materials, 2017, 152: 48-56. [12] CASTILLO D, CARO S, DARABI M, et al. Influence of aggregate morphology on the mechanical performance of asphalt mixtures[J]. Road Materials and Pavement Design, 2018, 19(4): 972-991. [13] WANG F, XIAO Y, CUI P D, et al. Measuring aggregate morphologies based on three-dimensional curvature analysis[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(13): 1674-1686. [14] ZHANG L, DING P, SI W, et al. Study on the photothermal performance of a “thermal shielding” coating using tungsten bronze as functional material for asphalt pavement[J]. Materials, 2023, 16(22): 7150. [15] CHEN Z W, JIAO Y Y, WU S P, et al. Moisture-induced damage resistance of asphalt mixture entirely composed of gneiss and steel slag[J]. Construction and Building Materials, 2018, 177: 332-341. [16] ZHONG T, ZHENG Y W, CHEN Z W, et al. Utilization of steel slag as coarse aggregate and filler in stone mastic asphalt (SMA) mixture: engineering performance, environmental impact and economic benefits analysis[J]. Journal of Cleaner Production, 2024, 450: 141891. [17] 刘名扬, 周 彬, 颜 峰, 等. 铁尾矿-钢渣集料微表处混合料路用性能及耐久性试验研究[J]. 硅酸盐通报, 2022, 41(9): 3176-3189. LIU M Y, ZHOU B, YAN F, et al. Experimental study on road performance and durability of iron tailings-steel slag aggregate micro-surface mixture[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3176-3189 (in Chinese). [18] 陈宗武, 冷 真, 肖 月, 等. 面向沥青混凝土矿料全替代的钢-铁渣梯级利用[J]. 中国公路学报, 2021, 34(10): 190-203. CHEN Z W, LENG Z, XIAO Y, et al. Complete replacement of mineral raw materials in asphalt concrete by steel & iron slags based on cascade utilization strategy[J]. China Journal of Highway and Transport, 2021, 34(10): 190-203 (in Chinese). [19] LI Y L, XU M Y, LI Q, et al. Study on the properties and heavy metal solidification characteristics of sintered ceramsites composed of magnesite tailings, sewage sludge, and coal gangue[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 11128. [20] JIANG J, CHEN S, JIN C, et al. Preparation and properties of high-strength lightweight aggregate ceramsite from nepheline tailings[J]. Construction and Building Materials, 2023, 368: 130458. [21] 朱万旭, 李万杰, 周红梅, 等. 赤泥煤矸石吸音降噪陶粒的研制[J]. 非金属矿, 2023, 46(6): 11-15. ZHU W X, LI W J, ZHOU H M, et al. Study on the process of preparing sound-absorbing ceramsite by red mud and coal gangue[J]. Non-Metallic Mines, 2023, 46(6): 11-15 (in Chinese). [22] 段凯强, 谢慧娟, 范智禹, 等. 赤泥-粉煤灰免烧陶粒的制备及应用[J]. 非金属矿, 2023, 46(1): 43-46. DUAN K Q, XIE H J, FAN Z Y, et al. Preparation and characterization of red mud and fly ash non-fired ceramsite[J]. Non-Metallic Mines, 2023, 46(1): 43-46 (in Chinese). [23] RILEY C M. Relation of chemical properties to the bloating of clays[J]. Journal of the American Ceramic Society, 1951, 34(4): 121-128. [24] 李星臻, 李国峰, 刘立伟, 等. 铁尾矿制备陶粒工艺、机理与应用进展[J]. 矿产保护与利用, 2024, 44(6): 56-63. LI X Z, LI G F, LIU L W, et al. Technology, mechanism, and application progress for ceramsite prepared by iron tailings[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 56-63 (in Chinese). [25] 柴春镜, 宋慧平, 冯政君, 等. 粉煤灰陶粒的研究进展[J]. 洁净煤技术, 2020, 26(6): 11-22. CHAI C J, SONG H P, FENG Z J, et al. Research progress on the fly ash ceramsite[J]. Clean Coal Technology, 2020, 26(6): 11-22 (in Chinese). [26] CSÁKI , LUKÁČ F, HÚLAN T, et al. Preparation of anorthite ceramics using SPS[J]. Journal of the European Ceramic Society, 2021, 41(8): 4618-4624. [27] 陈 驰. 岩石热导率影响因素的实验研究[D]. 北京: 中国石油大学(北京), 2021. CHEN C. Experimental study on influencing factors of thermal conductivity of rocks[D]. Beijing: China University of Petroleum (Beijing), 2021 (in Chinese). |