[1] 皮永豪, 张立伟, 郭亮涛, 等. C80自密实混凝土的制备及性能研究[J]. 混凝土世界, 2025(6): 16-21. PI Y H, ZHANG L W, GUO L T, et al. Research on preparation technology and performance of C80 self-compacting concrete[J]. China Concrete, 2025(6): 16-21 (in Chinese). [2] 周 启. C50自密实再生混凝土力学性能及微观结构研究[D]. 武汉: 武汉工程大学, 2023. ZHOU Q. Study on mechanical properties and microstructure of C50 self-compacting recycled concrete[D]. Wuhan: Wuhan Institute of Technology, 2023 (in Chinese). [3] ROUSSEL N. Steady and transient flow behaviour of fresh cement pastes[J]. Cement and Concrete Research, 2005, 35(9): 1656-1664. [4] 吴 琼. 基于净浆流变性的自密实混凝土配合比设计方法研究[D]. 北京: 清华大学, 2013. WU Q. Study on the mix design method of self-compacting concrete based on the rheology of paste[D]. Beijing: Tsinghua University, 2013 (in Chinese). [5] 聂 鼎, 安雪晖. 基于图像处理的净浆扩展度测量工具开发[J]. 清华大学学报(自然科学版), 2016, 56(12): 1249-1254. NIE D, AN X H. Mini-slump flow measurement tool based on self phase image processing[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(12): 1249-1254 (in Chinese). [6] 聂 鼎. 基于净浆流变理论的自密实混凝土配合比优化方法研究[D]. 北京: 清华大学, 2016. NIE D. Research on optimizing mix proportion of self-compacting concrete based on paste rheological theory[D]. Beijing: Tsinghua University, 2016 (in chinese) [7] ZHANG J B, AN X H, NIE D. Effect of fine aggregate characteristics on the thresholds of self-compacting paste rheological properties[J]. Construction and Building Materials, 2016, 116: 355-365. [8] ZHANG J B, AN X H, YU Y Z, et al. Effects of coarse aggregate content on the paste rheological thresholds of fresh self-compacting concrete[J]. Construction and Building Materials, 2019, 208: 564-576. [9] 张 涛. 基于净浆流变理论与材料堆积特性的含粉煤灰自密实混凝土配合比设计方法[D]. 重庆: 重庆交通大学, 2020. ZHANG T. An enhanced mix design method of self-compacting concrete with fly ash content based on paste rheological threshold theory and material packing characteristics[D]. Chongqing: Chongqing Jiaotong University, 2020 (in Chinese). [10] 何小兵, 沈武福, 贾秋炳, 等. 砂浆流变特性及其膜厚对自密实混凝土性能的影响[J]. 东南大学学报(自然科学版), 2020, 50(3): 463-470. HE X B, SHEN W F, JIA Q B, et al. Effects of mortar rheological characteristics and film thickness on self-compacting concrete[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(3): 463-470 (in Chinese). [11] 南雪丽, 李荣洋, 姬建瑞, 等. 中流动性混凝土工作性与砂浆流变特性相关性研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(4): 81-86+95. NAN X L, LI R Y, JI J R, et al. Correlation between medium fluidity concrete workability and mortar rheological properties[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(4): 81-86+95 (in Chinese). [12] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 自密实混凝土应用技术规程: JGJ/T 283—2012[S]. 北京: 中国建筑工业出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. National Standardization Administration of the People's Republic of China. Technical specification for application of self-compacting concrete: JGJ/T 283—2012[S]. Beijing: China Architecture & Building Press, 2012 (in Chinese). [13] TOUTOU Z, ROUSSEL N. Multi scale experimental study of concrete rheology: from water scale to gravel scale[J]. Materials and Structures, 2006, 39(2): 189-199. [14] NUNES S, OLIVEIRA P M, COUTINHO J S, et al. Interaction diagrams to assess SCC mortars for different cement types[J]. Construction and Building Materials, 2009, 23(3): 1401-1412. [15] ROUSSEL N, STEFANI C, LEROY R. From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests[J]. Cement and Concrete Research, 2005, 35(5): 817-822. [16] 赵 筠. 自密实混凝土的研究和应用[J]. 混凝土, 2003(6): 9-17. ZHAO J. The research and application of self-compacting concrete[J]. Concrete, 2003(6): 9-17 (in Chinese). [17] 国家质量监督检验检疫总局, 全国水泥标准化技术委员会(SAC/TC 184). 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 中国标准出版社, 2005. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. National Technical Committee on Cement Standardization(SAC/TC 184). Standard test methon for cement density: GB/T 2419—2005[S]. Standards Press of China, 2005 (in Chinese). |