[1] LIU C, YANG Y, ZHOU Z, et al. (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC-(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics with low thermal conductivity[J]. Journal of the American Ceramic Society, 2022, 105(4): 2764-2771. [2] DING Y H, LIU L, GUO R Z, et al. (Hf0.25Zr0.25Sn0.25Ti0.25)O2 high-entropy ceramics and their microwave dielectric characteristics[J]. Journal of the American Ceramic Society, 2022, 105(11): 6710-6717. [3] MA M D, YE B L, HAN Y J, et al. High-pressure sintering of ultrafine-grained high-entropy diboride ceramics[J]. Journal of the American Ceramic Society, 2020, 103(12): 6655-6658. [4] FILIPOVIC S, OBRADOVIC N, HILMAS G E, et al. A super-hard high entropy boride containing Hf, Mo, Ti, V, and W[J]. Journal of the American Ceramic Society, 2024, 107(7): 4430-4435. [5] SMITH S M, FAHRENHOLTZ W G, HILMAS G E, et al. Pressureless sintering of dual-phase, high-entropy boride-carbide ceramics[J]. Journal of the American Ceramic Society, 2023, 106(6): 3359-3363. [6] SMITH S M, FENG L, FAHRENHOLTZ W G, et al. High-entropy boride-carbide ceramics by sequential boro/carbothermal synthesis[J]. Journal of the American Ceramic Society, 2022, 105(9): 5543-5547. [7] HUO S J, CHEN L, LIU X R, et al. Reactive sintering of dual-phase high-entropy ceramics with superior mechanical properties[J]. Journal of Materials Science & Technology, 2022, 129: 223-227. [8] LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. Journal of Advanced Ceramics, 2020, 9(4): 503-510. [9] FENG L, FAHRENHOLTZ W G, HILMAS G E. Processing of dense high-entropy boride ceramics[J]. Journal of the European Ceramic Society, 2020, 40(12): 3815-3823. [10] BAYRAK K G, UMUTLU Ö N, KOROGLU L, et al. Mechanical characteristics of dual-phase medium-entropy boride/carbide ceramics synthesized through SPS[J]. Journal of the American Ceramic Society, 2025, 108(3): e20282. [11] WANG F W, XU L, ZOU J, et al. Pressureless densification and properties of high-entropy boride ceramics with B4C additions[J]. Journal of Materials Science & Technology, 2024, 190: 1-9. [12] ZOU Q, GU H T, LI Y G, et al. Characterization and analysis of high-entropy boride ceramics sintered at low temperature[J]. Journal of the American Ceramic Society, 2023, 106(5): 2764-2772. [13] SMITH S M, FAHRENHOLTZ W G, HILMAS G E. Pressureless sintering of high-entropy boride ceramics[J]. Journal of the European Ceramic Society, 2023, 43(12): 5168-5173. [14] ZHU D, ZHOU J, HUO T, et al. Fabrication of high transmittance AlON ceramics by three-step pressureless sintering[J]. Journal of Materials Research and Technology, 2024, 33: 8992-9000. [15] MARTIN H P, FENG B, MICHAELIS A. Pressureless sintering and properties of boron carbide composite materials[J]. International Journal of Applied Ceramic Technology, 2020, 17(2): 407-412. [16] LIU J, YANG Q Q, ZOU J, et al. Strong high-entropy diboride ceramics with oxide impurities at 1 800 ℃[J]. Science China Materials, 2023, 66(5): 2061-2070. [17] ZHANG Y, GUO W M, JIANG Z B, et al. Dense high-entropy boride ceramics with ultra-high hardness[J]. Scripta Materialia, 2019, 164: 135-139. [18] QIN M D, GILD J, HU C Z, et al. Dual-phase high-entropy ultra-high temperature ceramics[J]. Journal of the European Ceramic Society, 2020, 40(15): 5037-5050. [19] GROSS T M, LIU H S, ZHAI Y, et al. The impact of densification on indentation fracture toughness measurements[J]. Journal of the American Ceramic Society, 2020, 103(7): 3920-3929. [20] SHEN X Q, LIU J X, LI F, et al. Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC particulate composites[J]. Ceramics International, 2019, 45(18): 24508-24514. |