[1] 宋 强, 张 鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410. SONG Q, ZHANG P, BAO J W, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410 (in Chinese). [2] 段力群, 董 璐, 马林建, 等. 泡沫混凝土单轴压缩下声发射特征试验研究[J]. 中国矿业大学学报, 2018, 47(4): 742-747. DUAN L Q, DONG L, MA L J, et al. Experimental study of acoustic emission characteristics of foamed concrete under uniaxial compression[J]. Journal of China University of Mining & Technology, 2018, 47(4): 742-747 (in Chinese). [3] 王立燕, 王 超, 张亚梅, 等. 运用声发射技术研究橡胶混凝土疲劳损伤过程[J]. 东南大学学报(自然科学版), 2009, 39(3): 574-579. WANG L Y, WANG C, ZHANG Y M, et al. Study on fatigue damage process of rubberized cement concrete by acoustic emission technique[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(3): 574-579 (in Chinese). [4] Japan Concrete Institute. Monitoring method for active cracks in concrete by acous-tic emission: JCMS-Ⅲ B5706[S]. Japan: Federation of Construction Materials Industries, 2003. [5] 王林均, 张 搏, 钱志宽, 等. 单轴压缩下两类脆性岩石声发射特征试验研究[J]. 工程地质学报, 2019, 27(4): 699-705. WANG L J, ZHANG B, QIAN Z K, et al. Experimental investigation of the acoustics emission characteristics of two types of brittle rocks under uniaxial compression[J]. Journal of Engineering Geology, 2019, 27(4): 699-705 (in Chinese). [6] 何满潮, 赵 菲, 杜 帅, 等. 不同卸载速率下岩爆破坏特征试验分析[J]. 岩土力学, 2014, 35(10): 2737-2747+2793. HE M C, ZHAO F, DU S, et al. Rockburst characteristics based on experimental tests under different unloading rates[J]. Rock and Soil Mechanics, 2014, 35(10): 2737-2747+2793 (in Chinese). [7] OHTSU M. Acoustic emission theory for moment tensor analysis[J]. Research in Nondestructive Evaluation, 1995, 6(3): 169-184. [8] OHTSU M. Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6211-6221. [9] 周逸飞, 朱 星, 刘文德. 基于声发射和高斯混合模型的灰岩破裂特征识别研究[J]. 水利水电技术, 2019, 50(11): 131-140. ZHOU Y F, ZHU X, LIU W D. Identification of cracking characteristics of limestone under uniaxial compression condition using acoustic emission and GMM[J]. Water Resources and Hydropower Engineering, 2019, 50(11): 131-140 (in Chinese). [10] 闫召富. 基于声发射的花岗岩拉剪破裂识别方法研究[D]. 南宁: 广西大学, 2018. YAN Z F. Study on identification method of granite tensile-shear fracture based on acoustic emission[D]. Nanning: Guangxi University, 2018 (in Chinese). [11] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T 266—2011[S]. 北京: 中国标准出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Foamed concrete: JG/T 266—2011[S]. Beijing: Standards Press of China, 2011 (in Chinese). [12] 中华人民共和国水利部. 水工混凝土试验规程: SL/T 352—2020[S]. 北京: 中国水利水电出版社, 2020. Ministry of Water Resources of the People's Republic of China. Hydraulic concrete test procedure: SL/T 352—2020[S]. Beijing: China Water & Power Press, 2020 (in Chinese). [13] 陈 波, 陈家林, 强 晟, 等. 冻融环境下蒸养混凝土声发射试验研究[J]. 华中科技大学学报(自然科学版), 2023, 51(8): 41-46. CHEN B, CHEN J L, QIANG S, et al. Experimental study on acoustic emission of steam cured concrete in freeze-thaw environment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(8): 41-46 (in Chinese). [14] 陈 波, 袁志颖, 陈家林, 等. 冻融循环后蒸汽养护混凝土的损伤-声发射特性[J]. 建筑材料学报, 2023, 26(2): 143-149. CHEN B, YUAN Z Y, CHEN J L, et al. Damage-acoustic emission characteristics of steam-cured concrete after freeze-thaw cycles[J]. Journal of Building Materials, 2023, 26(2): 143-149 (in Chinese). [15] 袁志颖, 陈 波, 陈家林, 等. 不同加载速率下蒸养混凝土单轴压缩声发射特性研究[J]. 混凝土, 2024(3): 30-34+41. YUAN Z Y, CHEN B, CHEN J L, et al. Study on acoustic emission characteristics of steam-cured concrete under uniaxial compression at different loading rates[J]. Concrete, 2024(3): 30-34+41 (in Chinese). [16] 甘一雄, 吴顺川, 任 义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7): 2324-2332. GAN Y X, WU S C, REN Y, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters[J]. Rock and Soil Mechanics, 2020, 41(7): 2324-2332 (in Chinese). [17] 孙浩文, 陈 波, 高志涵, 等. 玄武岩纤维泡沫混凝土抗冻融性能[J/OL]. 复合材料学报, 1-11 (2024-10-24) [2025-04-07]. https://doi.org/10.13801/j.cnki.fhclxb.20241023.005. SUN H W, CHEN B, GAO Z H, et al. The freeze-thaw resistance of basalt fiber foam concrete[J/OL]. Acta Materiae Compositae Sinica, 1-11 (2024-10-24) [2025-04-07]. https://doi.org/10.13801/j.cnki.fhclxb.20241023.005 (in Chinese). [18] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22. [19] 赵国富, 苏国韶, 胡诗红, 等. 一种基于微震试验的硬岩破裂模式识别方法[J]. 实验力学, 2022, 37(1): 107-117. ZHAO G F, SU G S, HU S H, et al. A recognition method of cracking types for hard rock based on microseisms tests[J]. Journal of Experimental Mechanics, 2022, 37(1): 107-117 (in Chinese). [20] 李 瑞, 姚莹莹, 杨莉国. 机器视觉下物体裂纹识别研究[J]. 电脑知识与技术, 2024, 20(19): 17-19. LI R, YAO Y Y, YANG L G. Research on object crack identification based on machine vision[J]. Computer Knowledge and Technology, 2024, 20(19): 17-19 (in Chinese). [21] 黄晓红, 董诗琪, 李 静, 等. 基于GMM+SVM的声发射花岗岩裂纹识别研究[J]. 矿业安全与环保, 2022, 49(2): 21-28+34. HUANG X H, DONG S Q, LI J, et al. Research on granite crack identification by acoustic emission based on GMM+SVM[J]. Mining Safety & Environmental Protection, 2022, 49(2): 21-28+34 (in Chinese). [22] 徐颖晋, 庞振宇. 基于改进支持向量机的致密砂岩储层参数预测研究[J]. 现代电子技术, 2024, 47(5): 132-138. XU Y J, PANG Z Y. Research on tight sandstone reservoir parameter prediction based on improved support vector machine[J]. Modern Electronics Technique, 2024, 47(5): 132-138 (in Chinese). [23] 陈忠购. 基于声发射技术的钢筋混凝土损伤识别与劣化评价[D]. 杭州: 浙江大学, 2018. CHEN Z G. Damage identification and deterioration evaluation of reinforced concrete based on acoustic emission technology[D]. Hangzhou: Zhejiang University, 2018 (in Chinese). [24] 奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3): 123-124+128. FENG G H. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications, 2011, 47(3): 123-124+128 (in Chinese). [25] 高志涵, 陈 波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J]. 复合材料学报, 2024, 41(2): 827-838. GAO Z H, CHEN B, CHEN J L, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 827-838 (in Chinese). |