[1] 王少芹. 纳米改性混凝土材料研究进展[J]. 居舍, 2024(28): 67-70+73. WANG S Q. Research progress of nano-modified concrete materials[J]. Dwelling House, 2024(28): 67-70+73 (in Chinese). [2] 吴英哲, 衷从浩, 张金龙, 等. 纳米材料改性水泥基材料性能研究进展[J]. 广州建筑, 2024, 52(4): 109-114. WU Y Z, ZHONG C H, ZHANG J L, et al. Research progess on the modification of cement-based materials with nanomaterials[J]. Guangzhou Architecture, 2024, 52(4): 109-114 (in Chinese). [3] 李继芸, 韩建超, 李聪林, 等. 三种纳米材料对水泥砂浆性能的影响[J]. 市政技术, 2023, 41(5): 226-230+245. LI J Y, HAN J C, LI C L, et al. Effect of three nanomaterials on properties of cement mortar[J]. Journal of Municipal Technology, 2023, 41(5): 226-230+245 (in Chinese). [4] 张立卿, 肖振荣, 许开成, 等. 单掺/复掺碳纳米管和纳米二氧化钛硫铝酸盐水泥复合材料力学与自感知性能的影响[J]. 复合材料学报, 2025, 42(4): 2048-2061. ZHANG L Q, XIAO Z R, XU K C, et al. Effect of mono-doped/multi-doped carbon nanotubes and nano-titanium dioxide on mechanical and self-sensing properties of sulfoaluminate cementitious composites[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 2048-2061 (in Chinese). [5] 陈念慈, 李若菲, 黄点秋, 等. 碳纳米管对水泥基材料微观结构的影响研究[J]. 当代化工研究, 2024(9): 37-40. CHEN N C, LI R F, HUANG D Q, et al. Effect of carbon nanotubes on microstructure of cement-based materials[J]. Modern Chemical Research, 2024(9): 37-40 (in Chinese). [6] SAITO F, MI G M, HANADA M. Mechanochemical synthesis of hydrated calcium silicates by room temperature grinding[J]. Solid State Ionics, 1997, 101: 37-43. [7] LAND G, STEPHAN D. The effect of synthesis conditions on the efficiency of C-S-H seeds to accelerate cement hydration[J]. Cement and Concrete Composites, 2018, 87: 73-78. [8] WANG B Y, YAO W, STEPHAN D. Preparation of calcium silicate hydrate seeds by means of mechanochemical method and its effect on the early hydration of cement[J]. Advances in Mechanical Engineering, 2019, 11(4): 1-7. [9] 唐芮枫, 张佳乐, 王子明, 等. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 109-124. TANG R F, ZHANG J L, WANG Z M, et al. C-S-H nano-seed and its promoting effect on cement hydration and hardening: a review[J]. Materials Reports, 2023, 37(9): 109-124 (in Chinese). [10] HUBLER M H, THOMAS J J, JENNINGS H M. Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste[J]. Cement and Concrete Research, 2011, 41(8): 842-846. [11] FU J Y, JONES A M, BLIGH M W, et al. Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend-insights from pore solution chemistry[J]. Cement and Concrete Research, 2020, 135: 106110. [12] ZOU F B, HU C L, WANG F Z, et al. Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a greener binder[J]. Journal of Cleaner Production, 2020, 244: 118566. [13] ZOU F B, SHEN K J, HU C L, et al. Effect of sodium sulfate and C-S-H seeds on the reaction of fly ash with different amorphous alumina contents[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1659-1670. [14] ZHANG M, YANG L, WANG F Z. Influence of C-S-H seed and sodium sulfate on the hydration and strength of limestone calcined clay cement[J]. Journal of Cleaner Production, 2023, 408: 137022. [15] LI H X, XUE Z, LIANG G W, et al. Effect of C-S-Hs-PCE and sodium sulfate on the hydration kinetics and mechanical properties of cement paste[J]. Construction and Building Materials, 2021, 266: 121096. [16] NAIR P A K, VASCONCELOS W L, PAINE K, et al. A review on applications of sol-gel science in cement[J]. Construction and Building Materials, 2021, 291: 123065. [17] ALRBAIHAT M, KHALIL AL-ZEIDANEEN F, ABU-AFIFEH Q. Reviews of the kinetics of mechanochemistry: theoretical and modeling aspects[J]. Materials Today: Proceedings, 2022, 65: 3651-3656. [18] WANG X G, YU Y, ZOU F B, et al. High performance C-A-S-H seeds and sulfate-rich lithium slag by nano-mechanochemical method on cement hydration: microstructure and mechanical performance[J]. Advanced Powder Technology, 2024, 35(10): 104623. [19] ZHANG J J, TAN H B, HE X Y, et al. Nano particles prepared from hardened cement paste by wet grinding and its utilization as an accelerator in Portland cement[J]. Journal of Cleaner Production, 2021, 283: 124632. [20] GARCI JUENGER M C, JENNINGS H M. Examining the relationship between the microstructure of calcium silicate hydrate and drying shrinkage of cement pastes[J]. Cement and Concrete Research, 2002, 32(2): 289-296. [21] 赵晓刚. 水化硅酸钙的合成及其组成、结构与形貌[D]. 武汉: 武汉理工大学, 2010. ZHAO X G. Synthesis of calcium silicate hydrated and its composition, structure and morphology[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [22] ZHOU J, SANTAMBROGIO G, BRÜMMER M, et al. Infrared spectroscopy of hydrated sulfate dianions[J]. The Journal of Chemical Physics, 2006, 125(11): 111102. [23] 李 普. PCE复合晶种型早强剂的机械化学法制备及性能研究[D]. 广州: 华南理工大学, 2021. LI P. Properties and application of PCE composite seedearly strength agent by mechanochemical method[D]. Guangzhou: South China University of Technology, 2021 (in Chinese). [24] ZHU H W, LIAO C, HU C L, et al. A novel approach for high-efficient activation of large-volume slag cement towards a lower-carbon future in cement industry[J]. Construction and Building Materials, 2024, 442: 137638. [25] PICKER A, NICOLEAU L, NONAT A, et al. Influence of polymers on the nucleation of calcium silicate hydrates[J]. Cement and Concrete Research, 2023, 174: 107329. |