硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (10): 3503-3516.DOI: 10.16552/j.cnki.issn1001-1625.2025.0357
• 水泥混凝土 • 下一篇
张超1, 王志航1, 王超1, 聂良学2, 李炳辰1, 罗鑫3, 陈涛4
收稿日期:2025-04-08
修订日期:2025-06-09
出版日期:2025-10-15
发布日期:2025-11-03
通信作者:
王志航,博士,讲师。E-mail:wangzhihang901201@163.com
作者简介:张 超(1978—),男,教授。主要从事军事工程抢修方面的研究。E-mail:1833525542@qq.com
基金资助:ZHANG Chao1, WANG Zhihang1, WANG Chao1, NIE Liangxue2, LI Bingchen1, LUO Xin3, CHEN Tao4
Received:2025-04-08
Revised:2025-06-09
Published:2025-10-15
Online:2025-11-03
摘要: 抢修抢建工程要求胶凝材料必须具备快硬早强特性,在高海拔、高纬度地区及冬季严寒天气下,胶凝材料需适应负温环境。传统胶凝材料在此环境下无法正常水化,导致不凝固且无强度。磷酸镁水泥、硫铝酸盐水泥、碱激发矿渣胶凝材料、复合胶凝材料具有快凝快硬、水化放热集中、早强高强的特性,展现出应用于负温环境的潜力。本文综述了负温环境下快硬早强胶凝材料早期性能的研究进展,着重分析了负温环境下原材料的种类及性质、原材料之间的配比对磷酸镁水泥早期强度形成的影响,以及胶凝材料组分、防冻剂、早强剂及纳米材料等对硫铝酸盐水泥早期性能的改善效果。此外,本文还对未来负温环境下快硬早强胶凝材料的发展进行了展望。
中图分类号:
张超, 王志航, 王超, 聂良学, 李炳辰, 罗鑫, 陈涛. 负温环境下快硬早强胶凝材料的早期性能研究进展[J]. 硅酸盐通报, 2025, 44(10): 3503-3516.
ZHANG Chao, WANG Zhihang, WANG Chao, NIE Liangxue, LI Bingchen, LUO Xin, CHEN Tao. Early Age Properties of Rapid Hardening and Early Strength Cementitious Material at Negative Temperature Environment: a Review[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(10): 3503-3516.
| [1] 陈 歆, 刘 文, 崔安琪, 等. 高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能[J]. 材料导报, 2024, 38(17): 53-61. CHEN X, LIU W, CUI A Q, et al. Mechanical properties and freeze-thaw cycling resistance of magnesium phosphate cement mortar prepared at low temperatures in highland regions[J]. Materials Reports, 2024, 38(17): 53-61 (in Chinese). [2] 张 彤, 王志航, 白二雷, 等. 玄武岩纤维增强早强混凝土的早期动态力学性能[J]. 化工新型材料, 2023, 51(增刊2): 487-492. ZHANG T, WANG Z H, BAI E L, et al. Early dynamic mechanical properties of basalt fiber reinforced early strength concrete[J]. New Chemical Materials, 2023, 51(supplement 2): 487-492 (in Chinese). [3] WANG Z J, LI W J, ZHAO M L. Effect of antifreeze on the low-temperature properties of magnesium phosphate cement concrete[J]. Key Engineering Materials, 2024, 998: 103-110. [4] 韦 宇, 周新涛, 黄 静, 等. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 77-83. WEI Y, ZHOU X T, HUANG J, et al. Research progress on the effects of retarders on the properties and hydration mechanism of magnesium phosphate cement[J]. Materials Reports, 2022, 36(4): 77-83 (in Chinese). [5] WANG Z H, BAI E L, LIU C J, et al. Early age dynamic mechanical properties of basalt fiber reinforced early strength concrete[J]. Structural Concrete, 2023, 24(6): 7648-7659. [6] 吕 炎, 白二雷, 王志航, 等. 粉煤灰-矿渣基地聚物混凝土不同龄期动态力学性能[J]. 空军工程大学学报, 2022, 23(6): 99-106. LYU Y, BAI E L, WANG Z H, et al. Dynamic mechanical properties of fly ash-slag based polymer concrete at different ages [J]. Journal of Air Force Engineering University, 2022, 23(6): 99-106 (in Chinese). [7] 吕 炎, 白二雷, 王志航, 等. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 102-107. LYU Y, BAI E L, WANG Z H, et al. Effect and mechanism of low temperature curing on the early performance of epoxy resin based mortar[J]. Materials Reports, 2024, 38(5): 102-107 (in Chinese). [8] QIAN W Y, SUN W, GUO S, et al. Effect of temperature variation on bonding properties of magnesium potassium phosphate cement: a multiscale analysis[J]. Case Studies in Construction Materials, 2024, 21: e03993. [9] 田 婷, 张 爱, 李国新, 等. 氧化钙对硅酸盐水泥-铝酸盐水泥-硫酸钙体系低温水化性能的影响[J]. 硅酸盐通报, 2015, 34(12): 3670-3675. TIAN T, ZHANG A, LI G X, et al. Influence of calcium oxide on the hydration performance of Portland cement-aluminate cement-gypsum ternary system at low temperature[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(12): 3670-3675 (in Chinese). [10] 方仁义, 于 蕾, 范 波, 等. 低温暴露养护条件下混凝土强度增长规律研究[J]. 水利水电技术(中英文), 2024, 55(增刊 2): 733-739. FANG R Y, YU L, FAN B, et al. Study on the law of concrete strength growth under low temperature exposure and curing conditions[J]. Water Resources and Hydropower Engineering, 2024, 55(supplement 2): 733-739 (in Chinese). [11] 王霄翔, 谢 剑, 李培冬, 等. 超低温冻融循环后混凝土应力-应变全曲线试验研究[J]. 水利水电技术, 2014, 45(8): 153-158. WANG X X, XIE J, LI P D, et al. Experimental study on complete stress-strain curve of concrete after freeze-thaw cycles under extra-low temperatures[J]. Water Resources and Hydropower Engineering, 2014, 45(8): 153-158 (in Chinese). [12] LIU K X, YU W X, JIN L, et al. Influence of moisture content on compressive properties of concrete at cryogenic temperatures: tests and formulations[J]. Journal of Building Engineering, 2025, 100: 111771. [13] YUAN J, ZHANG Z P, CHEN X, et al. Long-term performance of magnesium phosphate cement concrete prepared in the winter[J]. European Journal of Environmental and Civil Engineering, 2025, 29(1): 176-200. [14] 陶 琦, 王 岩. 负温下磷酸镁水泥混凝土的力学性能与抗冻性能[J]. 冰川冻土, 2018, 40(6): 1181-1186. TAO Q, WANG Y. Mechanical properties and frost resistance of magnesium phosphate cement concrete under negative temperature[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1181-1186 (in Chinese). [15] JIA X W, LI J M, WANG P, et al. Preparation and mechanical properties of magnesium phosphate cement for rapid construction repair in ice and snow[J]. Construction and Building Materials, 2019, 229: 116927. [16] 张志超. 严寒环境冰水拌和磷酸镁水泥基材料的性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. ZHANG Z C. Study on properties of magnesium phosphate cement-based materials mixed with ice water in cold environment[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). [17] 王 平. 严寒环境下磷酸镁水泥的反应进程与力学性能调控[D]. 重庆: 重庆大学, 2020. WANG P. Reaction process and mechanical properties regulation of magnesium phosphate cement in severe cold environment[D]. Chongqing: Chongqing University, 2020 (in Chinese). [18] LUO X Z, LAI Z Y, LIU Z, et al. Effect of modified magnesium oxide on the properties of magnesium phosphate cement under a negative temperature environment[J]. Materials, 2022, 15(24): 9047. [19] 杜杰贵, 王雄锋, 陈 波, 等. 磷酸镁水泥在快速修补工程中的应用研究进展[J]. 施工技术(中英文), 2022, 51(15): 6-11. DU J G, WANG X F, CHEN B, et al. Review of magnesium phosphate cement applied in rapid repair engineering[J]. Construction Technology, 2022, 51(15): 6-11 (in Chinese). [20] ZHAO Z H, CAI X H, CHEN F, et al. Effect of wollastonite content on rheology and mechanical properties of 3D printed magnesium potassium phosphate cement-based material of MgO-SiO2-K2HPO4[J]. Construction and Building Materials, 2025, 458: 139729. [21] 张子鹏. 早期冻融对负温制备磷酸镁水泥基材料后期性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2023. ZHANG Z P. Effect of early freeze-thaw on late performance of magnesium phosphate cement-based materials prepared at negative temperature[D]. Harbin: Harbin Institute of Technology, 2023 (in Chinese). [22] 杨奉源, 赖振宇, 李 军, 等. 负温环境下复合磷酸盐对磷酸镁水泥性能的影响[J]. 新型建筑材料, 2024, 51(8): 123-129+135. YANG F Y, LAI Z Y, LI J, et al. The effect of composite phosphates on the properties of magnesium phosphate cement under negative temperature environment[J]. New Building Materials, 2024, 51(8): 123-129+135 (in Chinese). [23] 潘明杰, 郭金波, 刘润清. 负温环境下磷酸二氢钠对磷酸镁水泥力学性能的影响[J]. 辽宁化工, 2024, 53(8): 1199-1202. PAN M J, GUO J B, LIU R Q. Effect of sodium dihydrogen phosphate on mechanical properties of magnesium phosphate cement under negative temperature environment[J]. Liaoning Chemical Industry, 2024, 53(8): 1199-1202 (in Chinese). [24] 李俊萌. 严寒环境抢修抢建用磷酸镁水泥混凝土的制备与力学性能研究[D]. 重庆: 重庆大学, 2020. LI J M. Study on preparation and mechanical properties of magnesium phosphate cement concrete for emergency repair and construction in cold environment[D]. Chongqing: Chongqing University, 2020 (in Chinese). [25] 戴 民, 裴荔樵. 双组份负温磷酸镁水泥道路快速修补砂浆的制备与性能研究[J]. 新型建筑材料, 2018, 45(9): 21-24. DAI M, PEI L Q. Study on the preparation and performance of double component negative temperature MPC road quick repair mortar[J]. New Building Materials, 2018, 45(9): 21-24 (in Chinese). [26] 裴荔樵. 负温条件下双组份MPC快速修补材料的制备研究[D]. 沈阳: 沈阳建筑大学, 2018. PEI L Q. Study on preparation of Two-component MPC rapid repair material under negative temperature conditions[D]. Shenyang: Shenyang Jianzhu University, 2018 (in Chinese). [27] 汪宏涛. 高性能磷酸镁水泥基材料研究[D]. 重庆: 重庆大学, 2006. WANG H T. Research on high performance magnesium phosphate cement-based materials[D]. Chongqing: Chongqing University, 2006 (in Chinese). [28] 王攀龙, 高江涛. 防冻外加剂对磷酸盐水泥负温力学性能的影响[J]. 中国建材科技, 2021, 30(6): 40-42. WANG P L, GAO J T. Effect of antifreeze admixture on mechanical properties of MPC at negative temperature[J]. China Building Materials Science & Technology, 2021, 30(6): 40-42 (in Chinese). [29] 袁梦甜. 养护温度对粉煤灰磷酸镁修补砂浆性能影响机制研究[D]. 郑州: 中原工学院, 2023. YUAN M T. Study on mechanism of influence of curing temperature on properties of fly ash magnesium phosphate repair mortar [D]. Zhengzhou: Zhongyuan University of Technology, 2023 (in Chinese). [30] 王乐凡, 张继超, 郭鹏硕, 等. 严寒环境下磷酸镁水泥材料早期性能研究[J]. 空军工程大学学报, 2024, 25(5): 10-18+1. WANG L F, ZHANG J C, GUO P S, et al. Research on early performance optimization for magnesium phosphate cement materials in severe cold environment[J]. Journal of Air Force Engineering University, 2024, 25(5): 10-18+1 (in Chinese). [31] 谢 剑, 金凌翼, 李 伟, 等. 负温养护条件下钢纤维增强磷酸镁水泥复合材料力学性能[J/OL]. 复合材料学报, 2024: 1-12 (2024-12-31) [2025-03-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20241230002&dbname=CJFD&dbcode=CJFQ. XIE J, JIN L Y, LI W, et al. Mechanical properties of steel fiber reinforced magnesium phosphate cement composites under negative temperature curing conditions[J/OL]. Acta Materiae Compositae Sinica, 2024: 1-12 (2024-12-31) [2025-03-05]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20241230002&dbname=CJFD&dbcode=CJFQ (in Chinese). [32] 张 歌. 硫铝酸盐水泥改性磷酸镁水泥的作用效果及其机理研究[D]. 西安: 西安建筑科技大学, 2016. ZHANG G. Study on the effect and mechanism of magnesium phosphate cement modified by sulphoaluminate cement[D]. Xi’an: Xi’an University of Architecture and Technology, 2016 (in Chinese). [33] HUANG X M, LIU G D, ZHENG Y, et al. The performance of magnesium phosphate cement in negative temperature environment: a state-of-the-art review[J]. Journal of Building Engineering, 2023, 76: 107278. [34] LIU S J, YANG K, YU L, et al. Integrated assessment of magnesium phosphate cement repaired concrete from the perspective of mechanical, geometric and electrochemical compatibility[J]. Cement and Concrete Composites, 2025, 157: 105958. [35] 刘 文. 低温低气压环境下磷酸镁水泥基材料孔结构与抗冻性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. LIU W. Study on pore structure and frost resistance of magnesium phosphate cement-based materials under low temperature and low air pressure[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). [36] 葛 乾. 严寒地区自然环境下磷酸镁水泥水化与孔结构研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. GE Q. Study on hydration and pore structure of magnesium phosphate cement under natural environment in cold region[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [37] JIA X W, LUO J Y, ZHANG W X, et al. Reaction characteristics and compressive strength of magnesia-phosphate cement at negative temperatures[J]. Construction and Building Materials, 2021, 305: 124819. [38] 江丽君. 快速修补材料施工工艺与施工方法研究[D]. 沈阳: 沈阳建筑大学, 2016. JIANG L J. Research on construction technology and construction method of rapid repair materials[D]. Shenyang: Shenyang Jianzhu University, 2016 (in Chinese). [39] LUO S, ZHANG G F, WANG X H, et al. Investigation on the effects of EVA on the early hydration of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2025, 466: 140348. [40] LU L L, LIU Y W, LUO Q, et al. Investigation into the effect of sulfoaluminate cement on compressive strength and impermeability of Portland cement with alkali-free accelerator at low temperatures[J]. Journal of Building Engineering, 2025, 101: 111948. [41] HUANG G P, PUDASAINEE D, GUPTA R, et al. Hydration reaction and strength development of calcium sulfoaluminate cement-based mortar cured at cold temperatures[J]. Construction and Building Materials, 2019, 224: 493-503. [42] ZHANG G, JIANG S, LEI Y J. Optimizing anti-freezing agent on the properties of Portland cement-calcium sulphoaluminate cement system based on Taguchi-GRA method[J]. Case Studies in Construction Materials, 2024, 20: e02998. [43] 王敬宇. 负温条件下硫铝酸盐水泥水化及性能的研究[D]. 北京: 中国建筑材料科学研究总院, 2020. WANG J Y. Study on slurry formation and properties of sulphoaluminate under negative temperature[D]. Beijing: China Building Materials Research Institute, 2020 (in Chinese). [44] 张鸿飞. 全负温条件下硫铝酸盐水泥性能调控及其机理研究[D]. 北京: 中国建筑材料科学研究总院, 2023. ZHANG H F. Study on performance regulation and mechanism of sulphoaluminate cement under full negative temperature[D]. Beijing: China Building Materials Research Institute, 2023 (in Chinese). [45] 孙华阳. 负温路面快速修补用硫铝酸盐水泥ECC性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. SUN H Y. Study on ECC performance of sulfoaluminate cement for rapid repair of negative temperature pavement[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). [46] 邓君安, 李德栋, 李启棣, 等. 硫铝酸盐早强水泥负温下的水化硬化[J]. 硅酸盐学报, 1983, 11(1): 85-94. DENG J A, LI D D, LI Q D, et al. The hydration and hardening of high early strength sulfoaluminate cement under subzero performance[J]. Journal of the Chinese Ceramic Society, 1983, 11(1): 85-94 (in Chinese). [47] HUO Y L, LU D, HAN X Y, et al. The role of admixed CaO in a sulphoaluminate cement system under winter environments[J]. Journal of Building Engineering, 2023, 78: 107638. [48] 张 晨. 外加剂对硫铝酸盐水泥负温性能影响及作用机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. ZHANG C. Effect of admixtures on negative temperature properties of sulphoaluminate cement and its mechanism[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). [49] 张鸿飞, 任俊儒, 叶家元, 等. 负温条件下不同溶液拌合硫铝酸盐水泥性能演化规律及机制[J]. 硅酸盐学报, 2024, 52(2): 624-640. ZHANG H F, REN J R, YE J Y, et al. Performance evolution laws and mechanisms of calcium sulphoaluminate cement mixed with different solutions at sub-zero temperature[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 624-640 (in Chinese). [50] 张鸿飞, 叶家元, 任俊儒, 等. -10 ℃条件下氯化钙溶液对硫铝酸盐水泥性能的影响[J]. 硅酸盐学报, 2022, 50(11): 2834-2843. ZHANG H F, YE J Y, REN J R, et al. Effect of calcium chloride solution on performance of calcium sulphoaluminate cement at -10 ℃[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2834-2843 (in Chinese). [51] 李华明. 防冻剂作用下硫铝酸盐水泥负温性能及其水化热力学模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020. LI H M. Negative temperature performance and thermodynamic simulation of hydration of sulphoaluminate cement under the action of antifreeze[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). [52] 刘 涛, 董三宝, 王 丹, 等. 负温固井用锂盐-硫铝酸盐水泥浆体系[J]. 钻井液与完井液, 2024, 41(4): 496-505. LIU T, DONG S B, WANG D, et al. Lithium salt-sulfoaluminate mud system for negative temperature cementing[J]. Drilling Fluids and Completion Fluids, 2024, 41(4): 496-505 (in Chinese). [53] CHEN H L, LI Z H, YING G B. Improvement of the negative-temperature properties of calcium sulphoaluminate cement by three multifunctional chemical admixtures[J]. Developments in the Built Environment, 2024, 20: 100537. [54] HUO Y L, HU S L, LU D, et al. Understanding the roles of Li2CO3 in a sulphoaluminate cement system at negative temperatures[J]. Case Studies in Construction Materials, 2023, 19: e02574. [55] WANG Z H, BAI E L, XU J Y, et al. Effect of nano-SiO2 and nano-CaCO3 on the static and dynamic properties of concrete[J]. Scientific Reports, 2022, 12(1): 907. [56] 李 恒, 王正君, 杜英欣. 纳米SiO2对硫铝酸盐混凝土负温力学性能与微观结构的影响[J]. 复合材料学报, 2025, 42(3): 1555-1565. LI H, WANG Z J, DU Y X. Effect of nano-SiO2 on negative temperature mechanical properties and microstructure of sulfoaluminate concrete[J]. Acta Materiae Compositae Sinica, 2025, 42(3): 1555-1565 (in Chinese). [57] CHEN T, WANG Z H, BAI E L, et al. Effect of nano admixtures on the engineering properties and microstructure of sulphoaluminate cement mortar at -10 ℃[J]. Construction and Building Materials, 2023, 402: 133015. [58] ZOU D H, WANG K, LI H Y, et al. Effect of LiAl-layered double hydroxides on hydration of calcium sulfoaluminate cement at low temperature[J]. Construction and Building Materials, 2019, 223: 910-917. [59] 王 可. 纳米锂铝类水滑石对硫铝酸盐水泥水化硬化影响研究[D]. 焦作: 河南理工大学, 2020. WANG K. Effect of nano-lithium aluminum hydrotalcite on hydration hardening of sulphoaluminate cement[D]. Jiaozuo: Henan Polytechnic University, 2020 (in Chinese). [60] 王敬宇, 叶家元, 程 华, 等. 负10 ℃条件下缓凝剂对快硬硫铝酸盐水泥水化及强度的影响[J]. 硅酸盐学报, 2020, 48(8): 1285-1294. WANG J Y, YE J Y, CHENG H, et al. Effect of retarder on hydration and strength of rapid-hardening calcium sulphoaluminate cement at -10 ℃[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1285-1294 (in Chinese). [61] 王志航, 白二雷, 周俊鹏, 等. 玄武岩纤维增强地质聚合物混凝土的动态力学性能[J]. 振动与冲击, 2024, 43(19): 134-144. WANG Z H, BAI E L, ZHOU J P, et al. Effects of basalt fibers and age on dynamic mechanical properties of geopolymer concrete[J]. Journal of Vibration and Shock, 2024, 43(19): 134-144 (in Chinese). [62] WANG Z H, BAI E L, HUANG H, et al. Dynamic mechanical properties of carbon fiber reinforced geopolymer concrete at different ages[J]. Ceramics International, 2023, 49(1): 834-846. [63] 于俊楠. 负温环境下路面快速修补用碱激发矿渣ECC性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. YU J N. Study on ECC performance of alkali-excited slag for quick pavement repair under negative temperature environment[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). [64] WANG Z H, BAI E L, REN B, et al. Effects of temperature and basalt fiber on the mechanical properties of geopolymer concrete under impact loads of different high strain rates[J]. Journal of Building Engineering, 2023, 72: 106605. [65] 黄 啸, 毛海勇, 袁晓峰, 等. -20 ℃条件下碱矿渣水泥性能研究[J]. 硅酸盐通报, 2014, 33(8): 2052-2055+2062. HUANG X, MAO H Y, YUAN X F, et al. Research performance of AASC under the condition of -20 ℃[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 2052-2055+2062 (in Chinese). [66] 邓 鹏, 黄 啸, 曹巨辉. 养护方式对负温条件下碱矿渣水泥砂浆强度的影响[J]. 材料导报, 2014, 28(增刊 2): 360-362+366. DENG P, HUANG X, CAO J H. Impacts of maintenance methods on the strength of alkali-activated slag cement under negative temperature[J]. Materials Reports, 2014, 28(supplement 2): 360-362+366 (in Chinese). [67] 吕 炎, 白二雷, 王志航, 等. 低温制备硅灰-偏高岭土-矿渣基地聚物砂浆试验及微观研究[J]. 材料导报, 2023, 37(增刊 2): 218-226. LYU Y, BAI E L, WANG Z H, et al. Experimental and microscopic study on preparation of silica fume-metakaolin-slag matrix polymer mortar at low temperature[J]. Materials Reports, 2023, 37(supplement 2): 218-226 (in Chinese). [68] ZHANG H E, AI J H, REN Q, et al. Understanding the strength evolution of alkali-activated slag pastes cured at subzero temperature[J]. Cement and Concrete Composites, 2023, 138: 104993. [69] 赵美杰. 碱激发矿渣胶凝材料的低温力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2017. ZHAO M J. Low temperature mechanical properties of alkali-excited slag gelling materials[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). [70] 李文博. 高性能套筒灌浆料的制备及低温环境的应用研究[D]. 郑州: 郑州大学, 2020. LI W B. Preparation of high-performance sleeve grouting material and its application in low temperature environment[D]. Zhengzhou: Zhengzhou University, 2020 (in Chinese). [71] 郝怡昕. CaO/硫铝酸盐水泥改性硅酸盐水泥的负温性能及机理研究[D]. 西安: 西安建筑科技大学, 2024. HAO Y X. Study on negative temperature properties and mechanism of Portland cement modified by CaO/sulphoaluminate cement[D]. Xi’an: Xi’an University of Architecture and Technology, 2024 (in Chinese). [72] 孙玉龙, 霍曼琳, 陈晓松. 负温铁路用预应力孔道压浆料的试验研究[J]. 新型建筑材料, 2020, 47(9): 123-126. SUN Y L, HUO M L, CHEN X S. Experimental study on a prestressed passage grouting material for negative temperature railway[J]. New Building Materials, 2020, 47(9): 123-126 (in Chinese). [73] 谢 松, 朱清华, 钱冠龙, 等. 不同水泥基的低负温套筒灌浆料性能研究[J]. 新型建筑材料, 2020, 47(1): 47-49+66. XIE S, ZHU Q H, QIAN G L, et al. Study on performance of low and negative temperature cementitious grout with different cement bases[J]. New Building Materials, 2020, 47(1): 47-49+66 (in Chinese). [74] 谢 松, 朱清华, 钱冠龙, 等. 利用硅酸盐水泥配制低温套筒灌浆料试验研究[J]. 新型建筑材料, 2019, 46(2): 15-18. XIE S, ZHU Q H, QIAN G L, et al. Experimental study on making low temperature sleeve grouting material by using Portland cement[J]. New Building Materials, 2019, 46(2): 15-18 (in Chinese). [75] 刘浩亚, 鲍洪志, 赵 卫. -18 ℃下冻土区负温水泥浆水化微观过程研究[J]. 钻井液与完井液, 2019, 36(1): 77-81. LIU H Y, BAO H Z, ZHAO W. Study on microscopic hydration process of a cold temperature cement slurry used in frozen areas at -18 ℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 77-81 (in Chinese). [76] 刘浩亚, 赵 卫, 李 燕, 等. 负温早强水泥浆体系的室内实验[J]. 石油钻采工艺, 2019, 41(3): 294-300. LIU H Y, ZHAO W, LI Y, et al. Laboratory experiments on the negative-temperature, early-strength slurry system[J]. Oil Drilling & Production Technology, 2019, 41(3): 294-300 (in Chinese). [77] 刘浩亚, 鲍洪志, 刘亚青, 等. 改性高铝水泥浆的负温硬化性能及其增强机制[J]. 石油钻探技术, 2021, 49(2): 54-60. LIU H Y, BAO H Z, LIU Y Q, et al. Hardening properties and enhancement mechanisms of modified alumina cement at minus temperature[J]. Petroleum Drilling Techniques, 2021, 49(2): 54-60 (in Chinese). [78] 马正先, 周传贵, 杭鑫坤, 等. 矿物掺合料对负温套筒灌浆料性能的影响[J]. 混凝土与水泥制品, 2017(8): 80-83. MA Z X, ZHOU C G, HANG X K, et al. Effects of mineral admixtures on properties of negative temperature sleeve grounting materials[J]. China Concrete and Cement Products, 2017(8): 80-83 (in Chinese). [79] 马正先, 宋沛霖, 杭鑫坤, 等. 外加剂对负温套筒灌浆料性能的影响[J]. 混凝土, 2019(5): 142-146+150. MA Z X, SONG P L, HANG X K, et al. Properties effect of admixture on negative temperature sleeve grouting material[J]. Concrete, 2019(5): 142-146+150 (in Chinese). [80] 马正先, 周传贵, 杭鑫坤, 等. 水泥对负温套筒灌浆料性能的影响[J]. 混凝土, 2018(11): 152-156. MA Z X, ZHOU C G, HANG X K, et al. Effect of composite cement on the properties of low temperature sleeve grouting material[J]. Concrete, 2018(11): 152-156 (in Chinese). [81] 李 兵, 马正先, 杭鑫坤, 等. 新型负温套筒灌浆料性能试验研究[J]. 混凝土与水泥制品, 2017(10): 9-13. LI B, MA Z X, HANG X K, et al. Experimental research on properties of new kind of negative temperature cementitious grout[J]. China Concrete and Cement Products, 2017(10): 9-13 (in Chinese). [82] 杭鑫坤. 低温套筒灌浆料试验研究[D]. 济南: 山东建筑大学, 2017. HANG X K. Experimental research on low temperature sleeve grouting material[D]. Jinan: Shandong Jianzhu University, 2017 (in Chinese). |
| [1] | 杨青原, 王垚, 单红日, 李辉, 陈聪, 姜能栋. 泡沫轻质混凝土常规三轴压缩力学性能研究[J]. 硅酸盐通报, 2025, 44(9): 3246-3254. |
| [2] | 吕洁琴, 袁豪, 高玲, 王岩, 顾杨, 孙仁娟. 磨耗对再生混凝土骨料物理性能及表观形态的影响[J]. 硅酸盐通报, 2025, 44(9): 3218-3226. |
| [3] | 蒋昊洋, 胡志德, 赵思勰, 张寒松, 许春霞. 环境温度对磷酸镁水泥水化温升的影响[J]. 硅酸盐通报, 2025, 44(9): 3147-3155. |
| [4] | 张书峰, 王蕾, 徐世龙, 蔡佳成, 陈锦帆, 黄继志. 环氧树脂各组分对环氧树脂砂浆的性能影响研究[J]. 硅酸盐通报, 2025, 44(9): 3156-3167. |
| [5] | 刘佳钰, 高誉, 刘泽, 温帅云, 王栋民, 危鹏, 张春辉, 朱正江, 李清亚. 水泥固化飞灰-水泥复合胶凝材料的性能与微观结构研究[J]. 硅酸盐通报, 2025, 44(9): 3272-3279. |
| [6] | 董发鑫, 徐子凡, 汪峻峰, 鲁刘磊, 叶伟开, 尚春静. 高强硫铝酸盐水泥基材料固化垃圾焚烧飞灰的试验研究[J]. 硅酸盐通报, 2025, 44(9): 3280-3287. |
| [7] | 孔伟鹏, 庞来学, 郭威, 田晓峰. 碱激发超细粉-粉煤灰胶凝材料压阻性能研究[J]. 硅酸盐通报, 2025, 44(9): 3288-3294. |
| [8] | 叶纪盛, 马英, 李淯伟, 邰安, 王家豪. 早期CO2养护对钢渣固废胶凝材料性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3326-3336. |
| [9] | 朱义洋, 耿海宁, 李宗刚, 马浩森, 罗阳, 陈伟, 李秋. 地聚物轻质防火涂料制备及其防火性能研究[J]. 硅酸盐通报, 2025, 44(8): 3049-3060. |
| [10] | 朱建平, 曹佳楠, 王祚麟, 李根深, 刘松辉, 郑波, 冯春花. 低钙高镁石灰石制备固碳熟料及其碳酸化硬化机理[J]. 硅酸盐通报, 2025, 44(8): 2762-2770. |
| [11] | 刘琦, 黄世谋, 郝建英, 崔步哲, 朱振国, 白朔. 二氧化钛对铝酸锌耐火陶瓷性能的影响[J]. 硅酸盐通报, 2025, 44(8): 3042-3048. |
| [12] | 李义胜, 吕伟, 吴赤球, 余正康, 何静, 水中和. 高掺量磷石膏胶凝材料硬化体制备及其性能调节[J]. 硅酸盐通报, 2025, 44(8): 2944-2954. |
| [13] | 杨阔, 王里, 李之建. 粘结剂喷射3D打印水泥基材料强度与精度协同优化研究[J]. 硅酸盐通报, 2025, 44(8): 2741-2751. |
| [14] | 黄杰, 水中和, 亓习博, 刘家宝, 黄周龙, 何静. EVA胶粉对超高性能工程水泥基复合材料性能的影响[J]. 硅酸盐通报, 2025, 44(8): 2752-2761. |
| [15] | 赵宇, 王哲, 朱伶俐. 纤维对3D打印UHPC流变性能和力学性能的影响[J]. 硅酸盐通报, 2025, 44(8): 2823-2838. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||