[1] International Organization for Standardization. Glass containers—methods of test: part 1: definitions and general requirements: ISO 10345-1[S]. Geneva: International Organization for Standardization, 2001. [2] International Organization for Standardization. Glass containers—methods of test: part 2: mechanical resistance and conditioning: ISO 10345-2[S]. Geneva: International Organization for Standardization, 2001. [3] American Biety for Testing and Materials. Standard test method for modulus of rupture of glass and glass-ceramics: ASTM C770[S]. West Conshohocken, PA: American Biety for Testing and Materials, 2013. [4] 胡 伟, 穆洪杨, 谈宝权, 等. 散射光弹性技术在化学钢化玻璃表面应力测量中的应用[J]. 玻璃与搪瓷, 2017, 45(5): 29-33. HU W, MU H Y, TAN B Q, et al. Measurement of surface stress of chemically strengthened glass by scattered light photoelasticity[J]. Glass & Enamel, 2017, 45(5): 29-33 (in Chinese). [5] 穆洪杨, 胡 伟, 陈芳华, 等. 光波导效应在化学钢化玻璃表面应力测量中的应用[J]. 玻璃与搪瓷, 2017, 45(4): 6-12. MU H Y, HU W, CHEN F H, et al. Application of optical waveguide effect in measurement of surface stress in chemically strengthened glass[J]. Glass & Enamel, 2017, 45(4): 6-12 (in Chinese). [6] 田英良, 王克宁, 李俊杰, 等. 玻璃材料光弹性常数测量表征方法的进展[J]. 玻璃搪瓷与眼镜, 2022, 50(4): 1-6. TIAN Y L, WANG K N, LI J J, et al. Review on methods for measuring the photoelastic constants of glass materials[J]. Glass Enamel & Ophthalmic Optics, 2022, 50(4): 1-6 (in Chinese). [7] BECHGAARD T K, MAURO J C, THIRION L M, et al. Photoelastic response of permanently densified oxide glasses[J]. Optical Materials, 2017, 67: 155-161. [8] 彭瑞欣, 韩 韩, 林鸿剑, 等. MgO含量对微晶玻璃结构及性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3497-3503. PENG R X, HAN H, LIN H J, et al. Effect of MgO content on structure and properties of glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3497-3503 (in Chinese). [9] 郑伟宏, 王启东, 高子鹏, 等. Na2O对锂铝硅微晶玻璃析晶及性能的影响[J]. 硅酸盐通报, 2024, 43(4): 1301-1307. ZHENG W H, WANG Q D, GAO Z P, et al. Effect of Na2O on crystallization and properties of lithium aluminum silicate glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(4): 1301-1307 (in Chinese). [10] 王衍行, 李现梓, 韩 韬, 等. 锂铝硅玻璃的研究进展[J]. 硅酸盐通报, 2022, 41(6): 2143-2152+2159. WANG Y H, LI X Z, HAN T, et al. Research progress on lithium aluminum silicate glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2143-2152+2159 (in Chinese). [11] 胡 伟, 尹勇明, 孟 鸿. 热处理对锂铝硅玻璃微观结构及机械性能的影响[J]. 硅酸盐通报, 2023, 42(7): 2613-2620. HU W, YIN Y M, MENG H. Effect of heat treatment on microstructure and mechanical properties of lithium aluminum silicon glass[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2613-2620 (in Chinese). [12] 田英良, 韩金龙, 徐 博, 等. 组成对钠铝硅玻璃中钇锆酸盐纳米晶析晶性能的影响[J]. 硅酸盐通报, 2024, 43(2): 710-718. TIAN Y L, HAN J L, XU B, et al. Effect of composition on crystallization properties of yttrium zirconate nanocrystals in sodium-aluminum-silicate glass[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 710-718 (in Chinese). [13] 刘红刚, 平文亮, 李 升, 等. 碱金属和碱土金属铝硅酸盐微晶盖板玻璃的研究现状和发展趋势[J]. 硅酸盐通报, 2022, 41(11): 3925-3936. LIU H G, PING W L, LI S, et al. Research status and development trend of alkali and alkaline earth aluminosilicate glass-ceramics cover glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3925-3936 (in Chinese). [14] SMEDSKJAER M M, POTUZAK M, GUO X J, et al. Compositional control of the photoelastic response of silicate glasses[J]. Optical Materials, 2013, 35(12): 2435-2439. [15] SOPHIE A, PATRICK M, HEIDI O, et al. Thermal effects on the photoelastic coefficient of polymer optical fibers[J]. Optics Letters, 2016, 41(11): 2517-2520. [16] FONTANA E H. Stress-optical coefficients for glasses in their annealingrange[J]. American Ceramic Society Bulletin, 1985(64): 1456-1458. [17] WITZENS J. Ab initio calculation of the deformation potential and photoelastic coefficients of silicon with a non-uniform finite-difference solver based on the local density approximation[J]. Computer Physics Communications, 2014, 185(8): 2221-2231. [18] 田英良, 刘心浩, 李俊杰, 等. 超薄高强屏幕保护玻璃发展综述[J]. 硅酸盐通报, 2022, 41(11): 3937-3944. TIAN Y L, LIU X H, LI J J, et al. Review of ultrathin high strength screen protection glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3937-3944 (in Chinese). [19] 田英良, 李俊杰, 杨宝瑛, 等. 化学增强型超薄碱铝硅酸盐玻璃发展概况与展望[J]. 燕山大学学报, 2017, 41(4): 283-292. TIAN Y L, LI J J, YANG B Y, et al. Development and prospect of chemically strengthened ultra-thin alkali alumina silicate glass[J]. Journal of Yanshan University, 2017, 41(4): 283-292 (in Chinese). [20] 廖伟帆, 胡传杰, 王明忠, 等. 超薄铝硅玻璃离子交换工艺研究[J]. 硅酸盐通报, 2022, 41(4): 1163-1169. LIAO W F, HU C J, WANG M Z, et al. Ion-exchange process of ultrathin aluminosilicate glasses[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1163-1169 (in Chinese). [21] 高 强, 刘振英, 彭小波, 等. 化学强化工艺对3~6 mm厚锂铝硅玻璃的抗冲击性能影响[J]. 硅酸盐通报, 2024, 43(12): 4578-4587. GAO Q, LIU Z Y, PENG X B, et al. Effect of chemical reinforcement process on impact resistance of 3~6 mm thick lithium aluminosilicate glass[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(12): 4578-4587 (in Chinese). [22] 北京工业大学. 玻璃光弹常数试验方法 纤维法: T/CSTM 01083—2023[S]. 北京: 中国材料与试验团体标准发布机构, 2023. Beijing University of Technology. Test method for stress-optical coefficient of glass—fiber method: T/CSTM 01083—2023[S]. Beijing: Publisher of China Standards for Testing and Materials, 2023 (in Chinese). [23] 干福熹. 光学玻璃(上册)[M]. 北京: 科学出版社, 1981: 161. GAN F X. Optical glass (volume I)[M]. Beijing: Science Press, 1981: 161 (in Chinese). |