[1] 陈翠芝, 陈伟国. 城市主要大气污染物与呼吸系统疾病相关性浅析[J]. 上海环境科学, 1994, 13(9): 27-30. CHEN C Z, CHEN W G. Preliminary analysis of correlation between respiratory disease and urban air pollutants[J]. Shanghai Environmental Sciences, 1994, 13(9): 27-30 (in Chinese). [2] 郝守进, 崔九思. 环境中挥发性有机化合物对人体健康影响的研究进展[J]. 医学研究通讯, 2000, 29(2): 20-23. HAO S J, CUI J S. Research progress on the effects of volatile organic compounds in the environment on human health[J]. Bulletin of Medical Research, 2000, 29(2): 20-23 (in Chinese). [3] 吴国明. 水泥窑协同处置城市生活垃圾现状分析[J]. 新型建筑材料, 2024, 51(6): 110-113+129. WU G M. Analysis on the current situation of collaborative disposal of urban household waste by cement kilns[J]. New Building Materials, 2024, 51(6): 110-113+129 (in Chinese). [4] 吴辉廷, 胡 剑, 岳天佐, 等. 水泥窑尾烟气中有机物污染物监测建议[J]. 现代工业经济和信息化, 2022, 12(4): 89-90. WU H T, HU J, YUE T Z, et al. Suggestions on organic matter monitoring in waste gas from cement kiln inlet[J]. Modern Industrial Economy and Informationization, 2022, 12(4): 89-90 (in Chinese). [5] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. [6] 邵嘉铭. 基于锰系催化剂催化脱除烟气中NOx和VOCs的试验与机理研究[D]. 杭州: 浙江大学, 2020. SHAO J M. Experimental and mechanism study on catalytic removal of NOx and VOCs from flue gas based on manganese catalyst[D]. Hangzhou: Zhejiang University, 2020 (in Chinese). [7] 环境保护部, 国家质量监督检验检疫总局. 水泥工业大气污染物排放标准: GB 4915—2013[S]. 北京: 中国环境科学出版社, 2013. Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine. Emission standard for air pollutants from cement industry: GB 4915—2013[S]. Beijing: China Environmental Science Press, 2013 (in Chinese). [8] ZHOU X M, LIAO W, CAI N, et al. Experiment and mechanism investigation on simultaneously catalytic reduction of NOx and oxidation of toluene over MnOx/Cu-SAPO-34[J]. Applied Surface Science, 2023, 611: 155628. [9] 李冰欣. MCM-41介孔分子筛的合成及其研究现状[J]. 化工技术与开发, 2024, 53(7): 54-57. LI B X. Synthesis of MCM-41 mesoporous molecular sieves and its current research status[J]. Technology & Development of Chemical Industry, 2024, 53(7): 54-57 (in Chinese). [10] 胡灯红, 郑华均. MCM-41介孔分子筛改性研究进展[J]. 浙江化工, 2011, 42(3): 15-19. HU D H, ZHENG H J. Research development of modified mesoporous molecular sieve MCM-41[J]. Zhejiang Chemical Industry, 2011, 42(3): 15-19 (in Chinese). [11] 孟令钦, 崔素萍, 甘延玲, 等. Cu离子分子筛催化材料在去除NOx方面应用的研究进展[J]. 材料导报, 2024, 38(2): 46-54. MENG L Q, CUI S P, GAN Y L, et al. Research progress on application of Cu ion zeolite catalyst for NOx removal[J]. Materials Reports, 2024, 38(2): 46-54 (in Chinese). [12] LARACHI F, PIERRE J, ADNOT A, et al. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts[J]. Applied Surface Science, 2002, 195(1/2/3/4): 236-250. [13] ALEXOPOULOS K, ANILKUMAR M, REYNIERS M F, et al. Time-resolved operando X-ray absorption study of CuO-CeO2/Al2O3 catalyst during total oxidation of propane[J]. Applied Catalysis B: Environmental, 2010, 97(3/4): 381-388. [14] LI Z, GAO Y S, WANG Q. The influencing mechanism of NH3 and NOx addition on the catalytic oxidation of toluene over Mn2Cu1Al1Ox catalyst[J]. Journal of Cleaner Production, 2022, 348: 131152. [15] 黄学敏, 乔南利, 曹 利, 等. CuxCe1-xO2/γ-Al2O3催化剂催化燃烧甲苯性能的研究[J]. 环境科学学报, 2012, 32(5): 1177-1182. HUANG X M, QIAO N L, CAO L, et al. Catalytic performance of copper and cerium oxides-based γ-Al2O3 on combustion of toluene[J]. Acta Scientiae Circumstantiae, 2012, 32(5): 1177-1182 (in Chinese). [16] LI L L, ZHANG L, MA K L, et al. Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2017, 207: 366-375. [17] 邓丽萍, 时好雨, 刘霄龙, 等. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(增刊1): 542-548. DENG L P, SHI H Y, LIU X L, et al. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs[J]. Chemical Industry and Engineering Progress, 2023, 42(supplement 1): 542-548 (in Chinese). [18] 刘 旭, 黄 妍, 赵令葵, 等. 负载型CuMn2O4催化剂同时去除甲苯与NOx性能及机理研究[J]. 燃料化学学报, 2023, 51(12): 1856-1865. LIU X, HUANG Y, ZHAO L K, et al. Study on performance and mechanism of CuMn2O4 supported catalyst for simultaneous removal of toluene and NOx[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1856-1865 (in Chinese). [19] 黎 哲. 堇青石负载CuCoFe类水滑石衍生催化剂的制备及同时去除VOCs和NOx性能研究[D]. 北京: 北京林业大学, 2020. LI Z. Preparation of cordierite-supported CuCoFe hydrotalcite-like derivative catalyst and its performance for simultaneous removal of VOCs and NOx[D]. Beijing: Beijing Forestry University, 2020 (in Chinese). [20] 李 扬, 徐 博, 杨 赫, 等. Cu/Ce负载对赤泥脱除中低温烟气中NO的促进作用[J]. 燃料化学学报, 2024, 52(3): 362-372. LI Y, XU B, YANG H, et al. Promotion of Cu/Ce supported red mud for NO removal from low and medium temperature flue gas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 362-372 (in Chinese). [21] 蒋 露. SO2、H2O对镧铁系钙钛矿催化剂协同催化氧化NO和甲苯的影响机制研究[D]. 湘潭: 湘潭大学, 2021. JIANG L. Study on the influence mechanism of SO2 and H2O on the synergistic catalytic oxidation of NO and toluene with La-Fe perovskite catalyst[D]. Xiangtan: Xiangtan University, 2021 (in Chinese). [22] YANG J, HU S Y, FANG Y R, et al. Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation[J]. ACS Catalysis, 2019, 9(11): 9751-9763. [23] HEREDIA L, COLOMBO E, QUAINO P, et al. Toluene adsorption on CeO2 (111) studied by FTIR and DFT[J]. Topics in Catalysis, 2022, 65(7): 934-943. [24] FANG R X, LIU F, LIU J, et al. Experimental and theoretical insights into the reaction mechanism of spinel CuMn2O4 with CO in chemical-looping combustion[J]. Applied Surface Science, 2021, 561: 150065. [25] 康海彦, 莫杜娟, 张学军, 等. CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究[J]. 燃料化学学报, 2023, 51(6): 812-822. KANG H Y, MO D J, ZHANG X J, et al. Investigation of the surface acidity and redox on the CeO2-WO3 catalyst for selective catalytic reduction with NH3[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 812-822 (in Chinese). |