[1] SVESHNIKOVA D A, SULEIMANOV S I, RABADANOVA D I, et al. Adsorption of copper from aqueous solutions by activated carbon prepared from peach wood[J]. Journal of the Iranian Chemical Society, 2022, 19(7): 3205-3214. [2] VARDHAN K H, KUMAR P S, PANDA R C. Adsorption of copper ions from polluted water using biochar derived from waste renewable resources: static and dynamic analysis[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(16): 4067-4088. [3] ELFEGHE S, ANWAR S, JAMES L, et al. Adsorption of Cu(II) ions from aqueous solutions using ion exchange resins with different functional groups[J]. The Canadian Journal of Chemical Engineering, 2023, 101(4): 2128-2138. [4] ISMAIL M, JOBARA A, BEKOUCHE H, et al. Impact of Cu ions removal onto MgO nanostructures: adsorption capacity and mechanism[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(15): 12500-12512. [5] YANG C H, GAO R J, YANG H M. Application of layered nanoclay in electrochemical energy: current status and future[J]. EnergyChem, 2021, 3(5): 100062. [6] LU Y S, DONG W K, WANG W B, et al. A comparative study of different natural palygorskite clays for fabricating cost-efficient and eco-friendly iron red composite pigments[J]. Applied Clay Science, 2019, 167: 50-59. [7] YANG K, CHEN K F, JI H, et al. Experimental study on the inhibition of methane/air explosion by modified attapulgite powder[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104574. [8] GIONIS V. On the structure of palygorskite by mid- and near-infrared spectroscopy[J]. American Mineralogist, 2006, 91(7): 1125-1133. [9] SUÁREZ M, GARCÍA-ROMERO E, SÁNCHEZ DEL RÍO M, et al. The effect of the octahedral cations on the dimensions of the palygorskite cell[J]. Clay Minerals, 2007, 42(3): 287-297. [10] GUGGENHEIM S, KREKELER M P S. The structures and microtextures of the palygorskite-sepiolite group minerals[M]//Developments in Palygorskite-Sepiolite Research. Amsterdam: Elsevier, 2011: 3-32. [11] GARCÍA-RIVAS J, SÁNCHEZ DEL RÍO M, GARCÍA-ROMERO E, et al. An insight in the structure of a palygorskite from palygorskaja: some questions on the standard model[J]. Applied Clay Science, 2017, 148: 39-47. [12] MYRIAM M, SUÁREZ M, MARTÍN-POZAS J M. Structural and textural modifications of palygorskite and sepiolite under acid treatment[J]. Clays and Clay Minerals, 1998, 46(3): 225-231. [13] 王 群, 胡 涛, 赵婧男, 等. 酸改性凹凸棒土去除水中六价铬的改性条件研究[J]. 工业安全与环保, 2019, 45(8): 84-87. WANG Q, HU T, ZHAO J N, et al. Modification condition of the removal of Cr(VI) in solution by acid-modified attapulgite[J]. Industrial Safety and Environmental Protection, 2019, 45(8): 84-87 (in Chinese). [14] SONI V K, ROY T, DHARA S, et al. On the investigation of acid and surfactant modification of natural clay for photocatalytic water remediation[J]. Journal of Materials Science, 2018, 53(14): 10095-10110. [15] 李文翠. 凹凸棒土改性条件的探究及对污水中重金属离子的去除研究[D]. 沈阳: 沈阳师范大学, 2018: 12-13. LI W C. Study on modification conditions of attapulgite and its removal of heavy metal ions from sewage[D]. Shenyang: Shenyang Normal University, 2018: 12-13 (in Chinese). [16] MARTÍNEZ-LUÉVANOS A, RODRÍGUEZ-DELGADO M G, URIBE-SALAS A, et al. Leaching kinetics of iron from low grade kaolin by oxalic acid solutions[J]. Applied Clay Science, 2011, 51(4): 473-477. [17] ROZALEN M, HUERTAS F J. Comparative effect of chrysotile leaching in nitric, sulfuric and oxalic acids at room temperature[J]. Chemical Geology, 2013, 352: 134-142. [18] ZHANG Z F, WANG W B, KANG Y R, et al. Tailoring the properties of palygorskite by various organic acids via a one-pot hydrothermal process: a comparative study for removal of toxic dyes[J]. Applied Clay Science, 2016, 120: 28-39. [19] 施冬雷, 乔仁静, 许 琦. 酸改性凹凸棒土的制备及其脱汞性能[J]. 合成化学, 2015, 23(8): 720-724. SHI D L, QIAO R J, XU Q. Preparation of acid modified attapulgite and its performance of mercury removal[J]. Chinese Journal of Synthetic Chemistry, 2015, 23(8): 720-724 (in Chinese). [20] CORMA A, MIFSUD A, SANZ E. Influence of the chemical composition and textural characteristics of palygorskite on the acid leaching of octahedral cations[J]. 1987, 22(2): 225-232. [21] LU Y S, WANG W B, WANG Q, et al. Effect of oxalic acid-leaching levels on structure, color and physico-chemical features of palygorskite[J]. Applied Clay Science, 2019, 183: 105301. [22] 叶 鸣, 李 丽, 张先斌. 盐酸改性凹凸棒石条件对去除Cd2+效果的影响[J]. 工业用水与废水, 2013, 44(6): 49-52. YE M, LI L, ZHANG X B. Influencing factors of Cd2+ removal by HCl modified attapulgite[J]. Industrial Water & Wastewater, 2013, 44(6): 49-52 (in Chinese). [23] GUO N, WANG J S, LI J, et al. Dynamic adsorption of Cd2+ onto acid-modified attapulgite from aqueous solution[J]. Clays and Clay Minerals, 2014, 62(5): 415-424. [24] LEE S, ANDERSON P R, BUNKER G B, et al. EXAFS study of Zn sorption mechanisms on montmorillonite[J]. Environmental Science & Technology, 2004, 38(20): 5426-5432. [25] SUN Y B, LI J X, WANG X K. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques[J]. Geochimica et Cosmochimica Acta, 2014, 140: 621-643. [26] 李芳蓉. 黄原酸化改性凹凸棒土对Cu2+的吸附性能[J]. 贵州大学学报(自然科学版), 2023, 40(6): 116-124. LI F R. Adsorption properties of attapulgite modified by xanthan acidification for Cu2+[J]. Journal of Guizhou University (Natural Sciences), 2023, 40(6): 116-124 (in Chinese). [27] AYUSO E A, SANCHEZ A G. Removal of cadmium from aqueous solutions by palygorskite[J]. Journal of Hazardous Materials, 2007, 147(1/2): 594-600. [28] 张萌萌. 矸石基NaX型沸石对水中重金属离子的吸附性能研究[D]. 西安: 陕西师范大学, 2015: 18-19. ZHANG M M. Study on adsorption of heavy metal ions in water by gangue-based NaX zeolite[D]. Xi’an: Shaanxi Normal University, 2015: 18-19 (in Chinese). [29] ZAGHOUANE-BOUDIAF H, BOUTAHALA M, SAHNOUN S, et al. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2, 4, 5-trichlorophenol[J]. Applied Clay Science, 2014, 90: 81-87. [30] TOOR M, JIN B. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye[J]. Chemical Engineering Journal, 2012, 187: 79-88. [31] 姚秋芳. 基于竹质基微纳单元组装的气凝胶水净化功能材料研究[D]. 杭州: 浙江农林大学, 2017. YAO Q F. Study on aerogel water purification functional materials based on bamboo-based micro-nano unit assembly[D]. Hangzhou: Zhejiang A & F University, 2017 (in Chinese). [32] XU L, LIU Y N, WANG J G, et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: kinetic, thermal dynamic and DFT studies[J]. Journal of Hazardous Materials, 2021, 404: 124140. [33] AUGSBURGER M S, STRASSER E, PERINO E, et al. FTIR and mössbauer investigation of a substituted palygorskite: silicate with a channel structure[J]. Journal of Physics and Chemistry of Solids, 1998, 59(2): 175-180. [34] ARAÚJO MELO D M, RUIZ J A C, MELO M A F, et al. Preparation and characterization of terbium palygorskite clay as acid catalyst[J]. Microporous and Mesoporous Materials, 2000, 38(2/3): 345-349. [35] FROST R L, CASH G A, KLOPROGGE J T. ‘Rocky Mountain leather’, sepiolite and attapulgite: an infrared emission spectroscopic study[J]. Vibrational Spectroscopy, 1998, 16(2): 173-184. [36] SUÁREZ M, GARCÍA-ROMERO E. FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet[J]. Applied Clay Science, 2006, 31(1/2): 154-163. [37] BARRIOS M S, FLORES GONZÁLEZ L V, VICENTE RODRÍGUEZ M A, et al. Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties[J]. Applied Clay Science, 1995, 10(3): 247-258. [38] XU J X, WANG W B, WANG A Q. Effects of solvent treatment and high-pressure homogenization process on dispersion properties of palygorskite[J]. Powder Technology, 2013, 235: 652-660. [39] 陈雪芳, 熊 莲, 王 璨, 等. 酸改性对低品位凹凸棒石的白度和组成结构的影响[J]. 硅酸盐通报, 2017, 36(12): 4198-4204. CHEN X F, XIONG L, WANG C, et al. Effect of acid modification on whiteness and composition structure of low grade palygorskite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4198-4204 (in Chinese). [40] 张 媛, 尹建军, 王文波, 等. 酸活化对甘肃会宁凹凸棒石微观结构及亚甲基蓝吸附性能的影响[J]. 非金属矿, 2014, 37(2): 58-62. ZHANG Y, YIN J J, WANG W B, et al. Effects of acid activation on the microstructure and adsorption capacity for methylene blue of attapulgite clay from Huining of Gansu[J]. Non-Metallic Mines, 2014, 37(2): 58-62 (in Chinese). [41] KOMADEL P. Acid activated clays: materials in continuous demand[J]. Applied Clay Science, 2016, 131: 84-99. [42] WANG W B, DONG W K, TIAN G Y, et al. Highly efficient self-template synthesis of porous silica nanorods from natural palygorskite[J]. Powder Technology, 2019, 354: 1-10. [43] 谢晶晶. 热处理凹凸棒石结构、物性演化及其对磷的吸附作用[D]. 合肥: 合肥工业大学, 2013. XIE J J. Evolution of structure and physical properties of heat-treated attapulgite and its adsorption of phosphorus[D]. Hefei: Hefei University of Technology, 2013 (in Chinese). [44] KUMAR S, PANDA A K, SINGH R K. Preparation and characterization of acid and alkaline treated kaolin clay[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2013, 8(1): 61-69. |