[1] 韩佳欢, 乜 贞, 方朝合, 等. 中国锂资源供需现状分析[J]. 无机盐工业, 2021, 53(12): 61-66. HAN J H, NIE Z, FANG C H, et al. Analysis of existing circumstance of supply and demand on China's lithium resources[J]. Inorganic Chemicals Industry, 2021, 53(12): 61-66 (in Chinese). [2] 郑绵平, 邢恩袁, 张雪飞, 等. 全球锂矿床的分类、外生锂矿成矿作用与提取技术[J]. 中国地质, 2023, 50(6): 1599-1620. ZHENG M P, XING E Y, ZHANG X F, et al. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits[J]. Geology in China, 2023, 50(6): 1599-1620 (in Chinese). [3] WANG J, ZHANG Z J, ZHU J N, et al. Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing[J]. Nature Communications, 2020, 11: 3540. [4] JIA Z Q, WANG Y, SHI W X, et al. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation[J]. Journal of Membrane Science, 2016, 520: 139-144. [5] LU Z, WU Y, DING L, et al. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation[J]. Angewandte Chemie International Edition, 2021, 60(41): 22265-22269. [6] 高仁波, 赵云良, 陈立才, 等. 蒙脱石层电荷密度对其二维纳米片剥离的影响[J]. 硅酸盐学报, 2021, 49(7): 1420-1428. GAO R B, ZHAO Y L, CHEN L C, et al. Effect of layer charge density on the exfoliation of montmorillonite to prepare two-dimensional nanosheets[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1420-1428 (in Chinese). [7] CHEN L C, ZHAO Y L, CHEN T X, et al. Correlation of aspect ratio of montmorillonite nanosheets with the colloidal properties in aqueous solutions[J]. Results in Physics, 2019, 15: 102526. [8] LIU Y N, XIA Z J, WANG Y Q, et al. Montmorillonite membranes with tunable ion transport by controlling interlayer spacing[J]. ACS Applied Materials & Interfaces, 2023: 13678. [9] WANG X W, WEN T, ZHAO Y L, et al. Stabilization of structure and channel height of two-dimensional montmorillonite membrane for efficient ion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 696: 134277. [10] 苗艳晖, 赵云良, 陈立才, 等. 钙基膨润土钠化工艺过程及其对矿浆黏度影响研究[J]. 硅酸盐通报, 2022, 41(10): 3525-3532. MIAO Y H, ZHAO Y L, CHEN L C, et al. Sodium modification process of calcium bentonite and its effect on pulp viscosity[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3525-3532 (in Chinese). [11] WANG W G, WANG C, ZHANG Y Q, et al. Highly positively-charged membrane enabled by a competitive reaction for efficient Li+/Mg2+ separation[J]. Separation and Purification Technology, 2024, 330: 125428. [12] XU S S, SONG J F, BI Q Y, et al. Extraction of lithium from Chinese salt-lake brines by membranes: design and practice[J]. Journal of Membrane Science, 2021, 635: 119441. [13] ZHANG T T, REN B, BAI H Y, et al. Subnanometer-scale control of channel height in two-dimensional montmorillonite membrane for ion separation[J]. Journal of Membrane Science, 2023, 675: 121573. [14] WANG W, ZHANG C Y, HE J Y, et al. Chitosan-induced self-assembly of montmorillonite nanosheets along the end-face for methylene blue removal from water[J]. International Journal of Biological Macromolecules, 2023, 227: 952-961. [15] HE M L, LIU Z, WANG L, et al. Carboxymethylcellulose (CMC)/glutaraldehyde (GA)-modified Ti3C2Tx membrane and its efficient ion sieving performance[J]. Journal of Membrane Science, 2023, 675: 121541. [16] YI H, JIA F F, ZHAO Y L, et al. Surface wettability of montmorillonite (001) surface as affected by surface charge and exchangeable cations: a molecular dynamic study[J]. Applied Surface Science, 2018, 459: 148-154. [17] KANG S C, ZHAO Y L, WANG W, et al. Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent[J]. Applied Surface Science, 2018, 448: 203-211. [18] WANG W, ZHANG C Y, HE J Y, et al. Chitosan-induced self-assembly of montmorillonite nanosheets along the end-face for methylene blue removal from water[J]. International Journal of Biological Macromolecules, 2023, 227: 952-961. [19] CUI Q, CHEN B, LANG L, et al. Effects of synthetic processes on the swelling capacity and modification mechanism of CMC-modified bentonite composites[J]. Applied Clay Science, 2023, 241: 107005. [20] 王文海, 毛新宇. 盐湖卤水提锂制取氢氧化锂的工艺研究[J]. 当代化工研究, 2016(5): 102-103. WANG W H, MAO X Y. Technical study of extraction of lithium from salt lake brine to prepare lithium hydroxide[J]. Modern Chemical Research, 2016(5): 102-103 (in Chinese). [21] GUO Z Y, JI Z Y, CHEN Q B, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes[J]. Journal of Cleaner Production, 2018, 193: 338-350. [22] XU Y, CHEN Q B, GAO Y, et al. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis[J]. Chinese Journal of Chemical Engineering, 2023, 59: 42-50. [23] NIE X Y, SUN S Y, SUN Z, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J]. Desalination, 2017, 403: 128-135. [24] ZHOU Y, DING H, SMITH A T, et al. Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes[J]. Journal of Materials Chemistry A, 2019, 7(23): 14089-14096. [25] ZHANG H C, LI X Y, HOU J, et al. Angstrom-scale ion channels towards single-ion selectivity[J]. Chemical Society Reviews, 2022, 51(6): 2224-2254. [26] ZHANG H C, HOU J, HU Y X, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Science Advances, 2018, 4(2): eaaq0066. [27] JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. [28] WU Y D, QIAN Y C, NIU B, et al. Surface charge regulated asymmetric ion transport in nanoconfined space[J]. Small, 2021, 17(28): 2101099. [29] ZHANG T T, BAI H Y, ZHAO Y L, et al. Precise cation recognition in two-dimensional nanofluidic channels of clay membranes imparted from intrinsic selectivity of clays[J]. ACS Nano, 2022, 16(3): 4930-4939. |