[1] 李北星, 郭裕鑫, 易 浩, 等. 预湿再生砂与膨胀剂协同作用对再生砂混凝土收缩性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3368-3377. LI B X, GUO Y X, YI H, et al. Effects of synergistic action of pre-wetting recycled sand and expansion agents on shrinkage properties of recycled sand concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3368-3377 (in Chinese). [2] 焦茂鹏, 王鹏刚, 田 砾, 等. 低活性氧化镁膨胀剂对混凝土微结构、收缩和耐久性的影响[J]. 硅酸盐学报, 2023, 51(11): 2905-2913. JIAO M P, WANG P G, TIAN L, et al. Influence of S-type magnesia expansive agent on micro-structure, shrinkage and durability of concrete[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2905-2913 (in Chinese). [3] 陆安群, 王育江, 田 倩, 等. 钙镁复合膨胀剂的技术特点及其在地下工程中的应用[J]. 徐州工程学院学报(自然科学版), 2019, 34(1): 72-76. LU A Q, WANG Y J, TIAN Q, et al. Technical characteristics of calcium oxide and magnesium oxide compound expansive agent and its application in underground[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2019, 34(1): 72-76 (in Chinese). [4] 陈松洁. 钙镁复合膨胀技术在城市轨道交通工程中的应用[J]. 新型建筑材料, 2020, 47(7): 54-57. CHEN S J. Application of CaO-MgO compound expansion technology in urban railway traffic engineering[J]. New Building Materials, 2020, 47(7): 54-57 (in Chinese). [5] 任达勇, 柴国进, 何 阳, 等. 钢管混凝土用氧化镁复合膨胀剂试验研究与工程应用[J]. 新型建筑材料, 2020, 47(2): 45-48. REN D Y, CHAI G J, HE Y, et al. Experimental research and engineering application of MgO compound expansion agent in concrete filled steel tube[J]. New Building Materials, 2020, 47(2): 45-48 (in Chinese). [6] 王子龙, 丁建彤, 白 银, 等. CaO熟料的早期水化放热过程及水化程度[J]. 硅酸盐通报, 2019, 38(2): 375-379+385. WANG Z L, DING J T, BAI Y, et al. Early hydration exothermic process and hydration degree of CaO clinker[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 375-379+385 (in Chinese). [7] LI M, XU W, WANG Y J, et al. Shrinkage crack inhibiting of cast in situ tunnel concrete by double regulation on temperature and deformation of concrete at early age[J]. Construction and Building Materials, 2020, 240: 117834. [8] 徐 文, 闫志刚, 张士山, 等. 沪通长江大桥主航道桥桥塔温度场与膨胀调控抗裂技术[J]. 桥梁建设, 2020, 50(1): 44-49. XU W, YAN Z G, ZHANG S S, et al. Technique of controlling temperature field and concrete expansion to limit cracking in pylons of main navigational channel bridge of hutong Changjiang River bridge[J]. Bridge Construction, 2020, 50(1): 44-49 (in Chinese). [9] ZHANG H, LI L, FENG P, et al. Impact of temperature rising inhibitor on hydration kinetics of cement paste and its mechanism[J]. Cement and Concrete Composites, 2018, 93: 289-300. [10] 中华人民共和国工业和信息化部. 混凝土水化温升抑制剂: JC/T 2608—2021[S]. 北京: 中国建材工业出版社, 2021. Ministry of Industry and Information Technology of the People’s Republic of China. Concrete temperature rise inhibitor: JC/T 2608—2021[S]. Beijing: China Building Materials Industry Press, 2021 (in Chinese). [11] 秦 媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069. QIN Y, WANG W B, LIU J P. Effect of starch-based hydration temperature rise inhibitors on hydration of cement-fly ash composite cementitious materials[J]. Materials Reports, 2021, 35(16): 16065-16069 (in Chinese). [12] 陈炜一, 周予启, 李 嵩, 等. 水化热抑制剂对水泥-粉煤灰胶凝材料水化和混凝土性能的影响[J]. 硅酸盐学报, 2021, 49(8): 1609-1618. CHEN W Y, ZHOU Y Q, LI S, et al. Impact of temperature rising inhibitor on hydration of cement-fly ash cementitious materials and performance of concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1609-1618 (in Chinese). [13] 王 瑞, 王文彬, 储 阳, 等. 混凝土水化温升抑制剂对膨胀剂膨胀变形的影响研究[J]. 混凝土, 2022(2): 107-110+115. WANG R, WANG W B, CHU Y, et al. Effect of concrete temperature rise inhibitor on expansion deformation of expansive agent[J]. Concrete, 2022(2): 107-110+115 (in Chinese). [14] 储 阳, 王 瑞, 王文彬, 等. 水化温升抑制剂对钙类膨胀剂变温膨胀效能的影响[J]. 混凝土与水泥制品, 2024(6): 1-5+11. CHU Y, WANG R, WANG W B, et al. Effect of hydration temperature rise inhibitor on the temperature varying expansion efficiency of calcium based expansion agents[J]. China Concrete and Cement Products, 2024(6): 1-5+11 (in Chinese). [15] YAN Y, OUZIA A, YU C, et al. Effect of a novel starch-based temperature rise inhibitor on cement hydration and microstructure development[J]. Cement and Concrete Research, 2020, 129: 105961. [16] LIU J P, TIAN Q, WANG Y J, et al. Evaluation method and mitigation strategies for shrinkage cracking of modern concrete[J]. Engineering, 2021, 7(3): 168-188. [17] YAN Y, SCRIVENER K L, YU C, et al. Effect of a novel starch-based temperature rise inhibitor on cement hydration and microstructure development: the second peak study[J]. Cement and Concrete Research, 2021, 141: 106325. [18] 侯 敏, 霍 新, 高 超, 等. 水化温升抑制剂对混凝土性能的影响[J]. 新型建筑材料, 2023, 50(3): 12-15. HOU M, HUO X, GAO C, et al. Influence of hydration temperature rise inhibitor on concrete performance[J]. New Building Materials, 2023, 50(3): 12-15 (in Chinese). [19] 李建华, 周 锴, 邓 强, 等. MgO膨胀剂对超高性能混凝土(UHPC)工作性的影响及其机理研究[J]. 硅酸盐通报, 2024, 43(8): 2817-2826+2847. LI J H, ZHOU K, DENG Q, et al. Effect of MgO expansion agent on performance of ultra-high performance concrete (UHPC) and its mechanism[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(8): 2817-2826+2847 (in Chinese). [20] 孔祥付, 郭 飞, 田 倩, 等. 复合膨胀剂对高性能混凝土力学行为和收缩开裂行为的影响[J]. 混凝土, 2013(11): 68-71. KONG X F, GUO F, TIAN Q, et al. Effect of compound expansive agent on the mechanical behavior and deformation behavior of high performance concrete[J]. Concrete, 2013(11): 68-71 (in Chinese). [21] 沈 达, 邓 敏, 莫立武. 约束程度对外掺MgO混凝土变形及劈拉强度的影响[J]. 混凝土, 2012(10): 14-17. SHEN D, DENG M, MO L W. Effect of restraint degree on the expansion and tensile splitting strength of concrete containing MgO-based expansive agent[J]. Concrete, 2012(10): 14-17 (in Chinese). [22] 段劲松, 崔 勇, 付勇攀, 等. 含MgO膨胀剂的水泥砂浆在恒温和变温养护制度下的限制膨胀率[J]. 硅酸盐通报, 2024, 43(9): 3149-3156. DUAN J S, CUI Y, FU Y P, et al. Restricted expansion rate of cement mortar containing MgO expansive agent under constant and variable temperature curing conditions[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3149-3156 (in Chinese). [23] YAN Y, WANG R, WANG W B, et al. Robustness improvement of starch-based temperature rise inhibitor: study on the effect of casting/curing temperatures[J]. Journal of Building Engineering, 2023, 74: 106758. |