BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (5): 1899-1910.DOI: 10.16552/j.cnki.issn1001-1625.2024.1191
• Functional Materials • Previous Articles Next Articles
DING Jiexiong1, LIU Xin1, TIE Shengnian1, TIE Jian2, JIANG Zipeng1, WANG Yahui1, WANG Peiyi1, WANG Qinghai1
Received:2024-10-10
Revised:2025-01-07
Published:2025-05-20
CLC Number:
DING Jiexiong, LIU Xin, TIE Shengnian, TIE Jian, JIANG Zipeng, WANG Yahui, WANG Peiyi, WANG Qinghai. Preparation and Magnetic Performance of Magnetic Fe3O4 Nanoparticles by Facile Hydrothermal Method[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1899-1910.
| [1] MOUSTAFA M G, HAMDEH H H, SEBAK M A, et al. Mössbauer spectral analysis and magnetic properties of the superparamagnetic Mn0.5Zn0.5Fe2O4 ferrite nanocomposites[J]. Materials Today Communications, 2023, 37: 107090. [2] PUSIOL E F, SAAVEDRA E, PEREIRA A, et al. Dynamic susceptibility of Fe3O4 nanotubes[J]. Discover Nano, 2023, 18(1): 61. [3] SU J, LI G, BAI H, et al. Large perpendicular magnetic anisotropy and tunneling magnetoresistance in thermally stable Mo/FeNiB/MgO magnetic tunnel junctions[J]. Journal of Physics D: Applied Physics, 2020, 53(12): 125003. [4] SHAHU C K, DUBEY S, DWIVEDI S. Domain wall motion in multiferroic nanostructures under the influence of spin-orbit torque and nonlinear dissipative effect[J]. Mechanics of Advanced Materials and Structures, 2023, 30(24): 5047-5057. [5] LIU K Y, FENG W, LI Y R, et al. Reuseable Fe3O4@PEI-DTC-Au@Ag magnetic nanocomposites: a versatile and sensitive SERS substrate for food safety assessment[J]. Journal of Alloys and Compounds, 2024, 1002: 175433. [6] BRADLEY D. Magnetic memories[J]. Materials Today, 2018, 21(4): 324-325. [7] MI M J, XIAO H, YU L X, et al. Two-dimensional magnetic materials for spintronic devices[J]. Materials Today Nano, 2023, 24: 100408. [8] OLIVEIRA-FILHO G B, ATOCHE-MEDRANO J J, ARAGÓN F F H, et al. Core-shell Au/Fe3O4 nanocomposite synthesized by thermal decomposition method: structural, optical, and magnetic properties[J]. Applied Surface Science, 2021, 563: 150290. [9] MORÁN D, GUTIÉRREZ G, MENDOZA R, et al. Synthesis of controlled-size starch nanoparticles and superparamagnetic starch nanocomposites by microemulsion method[J]. Carbohydrate Polymers, 2023, 299: 120223. [10] PU S Y, XUE S Y, YANG Z, et al. In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies[J]. Environmental Science and Pollution Research International, 2018, 25(18): 17310-17320. [11] OH A H, PARK H Y, JUNG Y G, et al. Synthesis of Fe3O4 nanoparticles of various size via the polyol method[J]. Ceramics International, 2020, 46(8): 10723-10728. [12] XU S C, WANG Z H, SU R, et al. Structure and magnetic properties of multi-morphological CoFe2O4/CoFe nanocomposites by one-step hydrothermal synthesis[J]. Ceramics International, 2018, 44(8): 9377-9383. [13] JIANG H N, ZHANG P, WANG X G, et al. Synthesis of magnetic two-dimensional materials by chemical vapor deposition[J]. Nano Research, 2021, 14(6): 1789-1801. [14] BETANCOURT-CANTERA J A, SÁNCHEZ-DE JESÚS F, BOLARÍN-MIRÓ A M, et al. Magnetic properties and crystal structure of elemental cobalt powder modified by high-energy ball milling[J]. Journal of Materials Research and Technology, 2019, 8(5): 4995-5003. [15] LIU S X, YU B, WANG S, et al. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles[J]. Advances in Colloid and Interface Science, 2020, 281: 102165. [16] YEW Y P, SHAMELI K, MIYAKE M, et al. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review[J]. Arabian Journal of Chemistry, 2020, 13(1): 2287-2308. [17] ANGELAKERIS M. Magnetic nanoparticles: a multifunctional vehicle for modern theranostics[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2017, 1861(6): 1642-1651. [18] FATMAWATI T, SHIDDIQ M, ARMYNAH B, et al. Synthesis methods of Fe3O4 nanoparticles for biomedical applications[J]. Chemical Engineering & Technology, 2023, 46(11): 2356-2366. [19] LIU M Y, YE Y Y, YE J M, et al. Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications[J]. Magnetochemistry, 2023, 9(4): 110. [20] SMITH P F, KLINE H, TAKEUCHI E S, et al. Application of a multiscale, molecular- to meso-scale perspective towards the investigation of Fe3O4 as an energy storage material[J]. ECS Transactions, 2017, 77(11): 249-255. [21] HE W X, ZHUANG Y J, CHEN Y J, et al. Thermo-magnetic convection regulating the solidification behavior and energy storage of Fe3O4 nanoparticles composited paraffin wax under the magnetic-field[J]. Applied Thermal Engineering, 2022, 214: 118617. [22] ZHANG F F, YANG Z H, YIN T H, et al. Simple and facile synthesis of magnetic nanosheets by improved precipitation method[J]. Journal of Alloys and Compounds, 2022, 922: 166305. [23] KANG J C, HU C S, LIU X Q, et al. One-pot synthesis of magnetic nanocellulose/Fe3O4 hybrids using FeCl3 as cellulose hydrolytic medium and Fe3O4 precursor[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(15): 5917-5926. [24] YU X G, SHAN Y, DU B, et al. One-pot and template-free fabrication of dendritic and octahedral single-crystal magnetites[J]. CrystEngComm, 2011, 13(5): 1525-1530. [25] LI X Y, SI Z J, LEI Y Q, et al. Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms[J]. Cryst Eng Comm, 2010, 12(7): 2060. [26] XU Y, ZHANG Y, SONG X L, et al. Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor[J]. Functional Materials Letters, 2019, 12(2): 1950019. [27] ZHU J, NAN Z D. Zn-doped Fe3O4 nanosheet formation induced by EDA with high magnetization and an investigation of the formation mechanism[J]. The Journal of Physical Chemistry C, 2017, 121(17): 9612-9620. [28] SANI S, ADNAN R, OH W D, et al. Comparison of the surface properties of hydrothermally synthesised Fe3O4@C nanocomposites at variable reaction times[J]. Nanomaterials, 2021, 11(10): 2742. [29] MIZUTANI N, IWASAKI T, WATANO S, et al. Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles[J]. Bulletin of Materials Science, 2008, 31(5): 713-717. [30] ALIBEIGI S, VAEZI M R. Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+∶Fe3+[J]. Chemical Engineering & Technology, 2008, 31(11): 1591-1596. [31] 郭 慧. 氢氧化铁和羟基氧化铁的催化相转化机理研究[D]. 石家庄: 河北师范大学, 2006: 63-69. GUO H. Study on catalytic phase transformation mechanism of iron hydroxide and iron hydroxide[D]. Shijiazhuang: Hebei Normal University, 2006: 63-69 (in Chinese). [32] 王亭杰, 王伟林, 金 涌, 等. 针状羟基氧化铁晶体的成核与生长[J]. 仪器仪表学报, 1996, 17(增刊1): 399-403. WANG T J, WANG W L, JIN Y, et al. Nucleation and growth of the needle-like goethite crystals[J]. Chinese Journal of Scientific Instrument, 1996, 17(supplement 1): 399-403 (in Chinese). [33] IDCZAK K, IDCZAK R, KONIECZNY R. An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS[J]. Physica B: Condensed Matter, 2016, 491: 37-45. [34] YADAV B S, VISHWAKARMA A K, SINGH A K, et al. Oxygen vacancies induced ferromagnetism in RF-sputtered and hydrothermally annealed zinc ferrite (ZnFe2O4) thin films[J]. Vacuum, 2023, 207: 111617. [35] POULIN S, FRANÇA R, MOREAU-BÉLANGER L, et al. Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes[J]. Journal of Physical Chemistry C, 2010(24): 10711-10718. [36] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. [37] GE S, SHI X Y, SUN K, et al. A facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2009, 113(31): 13593-13599. [38] SRINIVAS C, TIRUPANYAM B V, SATISH A, et al. Effect of Ni2+ substitution on structural and magnetic properties of Ni-Zn ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2015, 382: 15-19. [39] LEE J S, CHA J M, YOON H Y, et al. Magnetic multi-granule nanoclusters: a model system that exhibits universal size effect of magnetic coercivity[J]. Scientific Reports, 2015, 5: 12135. [40] LESLIE-PELECKY D L, RIEKE R D. Magnetic properties of nanostructured materials[J]. Chemistry of Materials, 1996, 8(8): 1770-1783. [41] 戴道生. 物质磁性基础 [M]. 北京: 北京大学出版社, 2016: 46-47. DAI D S. Fundamentals of material magnetism[M]. Beijing: Peking Uniersity Press, 2016: 46-47 (in Chinese). [42] BAGHERZADEH E, HOSSEINI H R M, KHAKZADIAN J. Synthesis of magnetic mesoporous nanocomposites: a promising candidate for diagnostic and therapeutic biomedical applications[J]. Materials Chemistry and Physics, 2015, 167: 201-208. [43] HAW C Y, MOHAMED F, CHIA C H, et al. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents[J]. Ceramics International, 2010, 36(4): 1417-1422. [44] NANDWANA V, DRAVID V P. Multicomponent magnetic spinels: from complexity of crystal chemistry to coupled magnetic resonance imaging (MRI)[J]. APL Materials, 2023, 11(5): 050701. [45] VENKATESHVARAN D, ALTHAMMER M, NIELSEN A, et al. Epitaxial ZnxFe3-xO4 thin films: a spintronic material with tunable electrical and magnetic properties[J]. Physical Review B, 2009, 79(13): 134405. [46] REHMAN S U, AHMED R, LIU J, et al. Decrease in the particle size and coercivity of self-assembled CoNi nanoparticles synthesized under a repulsive magnetic field[J]. Particle & Particle Systems Characterization, 2019, 36(6): 1900047. [47] JACINTHO G V M, BROLO A G, CORIO P, et al. Structural investigation of MFe2O4 (M = Fe,Co) magnetic fluids[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7684-7691. |
| [1] | ZHOU Mingkai, WANG Xiao, GAO Peng, WANG Yuqiang. Preparation of High Strength Gypsum Product with Wet-Base α-Hemihydrous Gypsum [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2186-2197. |
| [2] | CHEN Zhiqiang, CUI Lei, DONG Jing, LI Haixia, XIA Weiwei. Preparation of CdS Nanospheres on Titanium Meshes with Photocatalytic H2 Evolution under Visible Light [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 727-733. |
| [3] | LI Qiaoqiao, LIU Hongying, ZHANG Qiuwen, WANG Lvyin, TAN Qixiang. Preparation of P-Type Molecular Sieves from Fischer-Tropsch Synthesis Waste Slag and Its Applications [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4501-4511. |
| [4] | ZUO Chuandong, WAN Jingqi, WEI Boxu, YANG Zaiwen, ZUO Chuange, MA Chaoyang. Synthesis of Spheroid Ba(Mg1/3Ta2/3)O3 Nano-Powders by Hydrothermal Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4563-4570. |
| [5] | QIN Sicheng, WU Jinxiu, QI Yuanhao, LIU Zhaogang, HU Yanhong, FENG Fushan, LI Jianfei, ZHANG Xiaowei. Effects of Additives on Anhydrous Calcium Sulfate Whisker Growth and Molecular Dynamics Simulation [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2551-2562. |
| [6] | FU Sinian, ZHU Ruihua. Simulation of Electronic Structure and Magnetism Properties of S Vacancy and Tc-Doped Monolayer MoS2 [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 4178-4182. |
| [7] | LIU Qiang, WANG Xiao, JIN Biao, LIN Xingtong, ZHANG Jianwu, WANG Yubin. Effect of Filtrate Circulation on Preparation of Desulfurization Gypsum Whiskers in H2SO4-NaCl-H2O System [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(9): 3202-3207. |
| [8] | HUANG Jia, JIN Yingrong, YANG Hualin, CHEN Wei, LI Yuling, WANG Zhijie. Whiskers Growth and Mechanism Analysis by Titanium Gypsum under Alkaline Conditions [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2828-2835. |
| [9] | ZHAO Yuhang, GUO Lei, MA Qingsong. Research Progress on Catalytical Pyrolysis of Preceramic Polymers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(4): 1395-1403. |
| [10] | ZHU Siyu, LI Li, LIU Ze, ZHANG Tong, HAN Fenglan, MA Zhenfei, LIU Jiayu. Hydrothermal Synthesis and Characterization of Zeolite NaA Based on Combination of Silico-Manganese Slag and Fly Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(2): 634-639. |
| [11] | CAO Wenlong, HUANG Youqi, ZANG Shuguang, ZU Chengkui, OU Yingchun, LIU Chaoying, XU Shaokun, YANG Youran. Effect of Heat Treatment Temperature on Microstructure of Fe-Ni Alloy Film and Properties of Coated Glass [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(9): 3152-3158. |
| [12] | WANG Bo, DUAN Xiaobo, DENG Lirong, WANG Jiabo, LU Shuhe, WANG Xiaogang. Subcritical Hydrothermal Removal of Common Metal Impurity in β-SiC Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(8): 2713-2718. |
| [13] | WANG Bo, DUAN Xiaobo, DENG Lirong, LU Shuhe, WANG Xiaogang, BAI Xiao. Subcritical Hydrothermal Removal of Si Impurity in β-SiC Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(2): 591-596. |
| [14] | WANG Wenkai, TAN Juan, WANG Shihan, QIU Xin. Synthesis and Catalytic Cracking Performance of Small-Sized NaY Zeolite/Kaolin Composites with High Framework SiO2/Al2O3 Ratio [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(10): 3479-3489. |
| [15] | YAN Kechong, LI Zipeng, LI Yangmin, WANG Pingzhi. Adsorption of Mercury in Aqueous Solution by Zeolite Prepared from Coal Fly Ash Using Alkali Fusion-Hydrothermal Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2020, 39(12): 3939-3944. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||