[1] KONG Y K, KURUMISAWA K. Fresh properties and characteristic testing methods for alkali-activated materials: a review[J]. Journal of Building Engineering, 2023, 75: 106830. [2] 史家乐, 李 静, 海 燕. 水泥行业碳源分析及碳排放核算研究[J]. 水泥, 2023(11): 20-23. SHI J L, LI J, HAI Y. Research on carbon source analysis and carbon emission accounting of cement industry[J]. Cement, 2023(11): 20-23 (in Chinese). [3] TARIQUE O, KOVTUN M. Novel one-part fly ash alkali-activated cements for ambient applications[J]. Advances in Cement Research, 2022, 34(10): 458-471. [4] SUN K K, ALI H A, XUAN D X, et al. Sulfuric acid resistance behaviour of alkali-activated slag and waste glass powder blended precursors[J]. Cement and Concrete Composites, 2024, 145: 105319. [5] SUN K K, ALI H A, XUAN D X, et al. Utilization of APC residues from sewage sludge incineration process as activator of alkali-activated slag/glass powder material[J]. Cement and Concrete Composites, 2022, 133: 104680. [6] SUN Y B, DE LIMA L M, ROSSI L, et al. Interpretation of the early stiffening process in alkali-activated slag pastes[J]. Cement and Concrete Research, 2023, 167: 107118. [7] 覃丽芳. 碱激发胶凝材料产物结构特性研究[D]. 长沙: 湖南大学, 2019. QIN L F. Study on the structural characteristics of gel products of alkali-activated binders[D]. Changsha: Hunan University, 2019 (in Chinese). [8] LV Y G, WANG C, HAN W W, et al. Study of the mechanical properties and microstructure of alkali-activated fly ash-slag composite cementitious materials[J]. Polymers, 2023, 15(8): 1903. [9] OUYANG X W, MA Y W, LIU Z Y, et al. Effect of the sodium silicate modulus and slag content on fresh and hardened properties of alkali-activated fly ash/slag[J]. Minerals, 2019, 10(1): 15. [10] SINGH B, RAHMAN M R, PASWAN R, et al. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete[J]. Construction and Building Materials, 2016, 118: 171-179. [11] WU Y L, JIA Z Q, QI X Q, et al. Alkali-activated materials without commercial activators: a review[J]. Journal of Materials Science, 2024, 59(9): 3780-3808. [12] CHELLADURAI S J S, MURUGAN K, RAY A P, et al. Optimization of process parameters using response surface methodology: a review[J]. Materials Today: Proceedings, 2021, 37: 1301-1304. [13] XIE L, ZHOU Y S, XIAO S H, et al. Research on basalt fiber reinforced phosphogypsum-based composites based on single factor test and RSM test[J]. Construction and Building Materials, 2022, 316: 126084. [14] RIHAN M M, SANDEEP S. Design optimization of a recycled concrete waste-based brick through alkali activation using Box-Behnken design methodology[J]. Journal of Building Engineering, 2023, 75: 106863. [15] ISHWARYA G, SINGH B, DESHWAL S, et al. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes[J]. Cement and Concrete Composites, 2019, 97: 226-238. [16] 曾铭乐, 王志祥. 固废基道路地聚物注浆材料的组分优化及机理研究[J]. 硅酸盐通报, 2023, 42(8): 3033-3044. ZENG M L, WANG Z X. Composition optimization and mechanism study of solid waste based road geopolymer grouting materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 3033-3044 (in Chinese). [17] MOHAMED O A, NAJM O, AHMED E. Alkali-activated slag & fly ash as sustainable alternatives to OPC: sorptivity and strength development characteristics of mortar[J]. Cleaner Materials, 2023, 8: 100188. [18] DEHGHANI A, ASLANI F, GHAEBI PANAH N. Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties[J]. Construction and Building Materials, 2021, 293: 123527. [19] 吕邦成, 郭丽萍, 丁 聪, 等. 高延性地质聚合物复合材料性能及微结构研究进展[J]. 材料导报, 2023, 37(10): 230-240. LYU B C, GUO L P, DING C, et al. A review on performance and microstructure of high ductility geopolymer composites[J]. Materials Reports, 2023, 37(10): 230-240 (in Chinese). [20] SUN M, MAO X Y, GAO X J, et al. Innovative encapsulation of alkali activators in alkali-activated slag concrete: a sustainable strategy for regulating setting time and durability[J]. Construction and Building Materials, 2024, 427: 136230. [21] NAQI A L, DELSAUTE B, KÖNIGSBERGER M, et al. Effect of solution-to-binder ratio and alkalinity on setting and early-age properties of alkali-activated slag-fly ash binders[J]. Materials, 2022, 16(1): 373. [22] DAI X D, AYDIN S, YARDIMCI M Y, et al. Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures[J]. Cement and Concrete Composites, 2022, 133: 104715. [23] 殷素红, 管海宇, 胡 捷, 等. 碱激发粉煤灰-矿渣灌浆材料的流变性与流动性[J]. 华南理工大学学报(自然科学版), 2019, 47(8): 120-128+135. YIN S H, GUAN H Y, HU J, et al. Rheological properties and fluidity of alkali-activated fly ash-slag grouting material[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 120-128+135 (in Chinese). [24] DAI X D, AYDIN S, YARDIMCI M Y, et al. Effects of activator properties and GGBFS/FA ratio on the structural build-up and rheology of AAC[J]. Cement and Concrete Research, 2020, 138: 106253. [25] SRINIVASA A S, SWAMINATHAN K, YARAGAL S C. Microstructural and optimization studies on novel one-part geopolymer pastes by Box-Behnken response surface design method[J]. Case Studies in Construction Materials, 2023, 18: e01946. |