[1] GUO Y Y, LUO L, LIU T T, et al. A review of low-carbon technologies and projects for the global cement industry[J]. Journal of Environmental Sciences, 2024, 136: 682-697. [2] GUPTA L K, VYAS A K. Impact on mechanical properties of cement sand mortar containing waste granite powder[J]. Construction and Building Materials, 2018, 191: 155-164. [3] LI L G, WANG Y M, TAN Y P, et al. Filler technology of adding granite dust to reduce cement content and increase strength of mortar[J]. Powder Technology, 2019, 342: 388-396. [4] 周长顺, 吉红波, 赵丽颖. 再生微粉在水泥基材料中的应用与研究进展[J]. 硅酸盐通报, 2019, 38(8): 2456-2463. ZHOU C S, JI H B, ZHAO L Y. Application and research progress of recycled micro-powders in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2456-2463 (in Chinese). [5] 毛文宫. 机械力化学作用对花岗岩石粉活性的影响[J]. 福建工程学院学报, 2022, 20(6): 527-531. MAO W G. Enhancement of granite powder activity by mechano chemistry action[J]. Journal of Fujian University of Technology, 2022, 20(6): 527-531 (in Chinese). [6] ZHANG D S, ZHANG S X, HUANG B W, et al. Comparison of mechanical, chemical, and thermal activation methods on the utilisation of recycled concrete powder from construction and demolition waste[J]. Journal of Building Engineering, 2022, 61: 105295. [7] HAMZAOUI R, BOUCHENAFA O, GUESSASMA S, et al. The sequel of modified fly ashes using high energy ball milling on mechanical performance of substituted past cement[J]. Materials & Design, 2016, 90: 29-37. [8] JIN L Z, CHEN M, WANG Y F, et al. Utilization of mechanochemically pretreated municipal solid waste incineration fly ash for supplementary cementitious material[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109112. [9] RAMADJI C, MESSAN A, PRUD'HOMME E. Influence of granite powder on physico-mechanical and durability properties of mortar[J]. Materials, 2020, 13(23): 5406. [10] WOŹNIAK Z Z, CHAJEC A, SADOWSKI Ł. Effect of the partial replacement of cement with waste granite powder on the properties of fresh and hardened mortars for masonry applications[J]. Materials, 2022, 15(24): 9066. [11] 范华峰, 段光林, 翟盛通, 等. 花岗岩石粉对水工混凝土抗碳化性能的影响[J]. 中国农村水利水电, 2020(9): 236-241+247. FAN H F, DUAN G L, ZHAI S T, et al. The effect of granite powder on the carbonation resistance of hydraulic concrete[J]. China Rural Water and Hydropower, 2020(9): 236-241+247 (in Chinese). [12] 赵井辉. 废弃矿物掺合料水工混凝土氯离子侵蚀、碳化及微观孔隙结构研究[D]. 泰安: 山东农业大学, 2016. ZHAO J H. Experimental research on chloride ion corrosion, carbonation and microscopic pore structure of waste mineral admixtures hydraulic concrete[D]. Taian: Shandong Agricultural University, 2016 (in Chinese). [13] 王宇谋. 花岗岩石粉对砂浆性能的影响研究[D]. 广州: 广东工业大学, 2018. WANG Y M. Study on the influence of granite powder on the performance of mortar[D]. Guangzhou: Guangdong University of Technology, 2018 (in Chinese). [14] MATOS A M, RAMOS T, SOUSA-COUTINHO J. Strength, ASR and chloride penetration of mortar with granite waste powder[J]. Key Engineering Materials, 2014, 634: 139-150. [15] RASHWAN M A, AL- BASIONY T M, MASHALY A O, et al. Behaviour of fresh and hardened concrete incorporating marble and granite sludge as cement replacement[J]. Journal of Building Engineering, 2020, 32: 101697. [16] 邹云华, 刘 力, 杨宏天, 等. 不同岩性石粉对水泥水化性能的影响[J]. 硅酸盐通报, 2023, 42(10): 3445-3453. ZOU Y H, LIU L, YANG H T, et al. Effect of different lithology stone powder on hydration properties of cement[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3445-3453 (in Chinese). [17] JAIN K L, SANCHETI G, GUPTA L K. Durability performance of waste granite and glass powder added concrete[J]. Construction and Building Materials, 2020, 252: 119075. [18] 郝 彤, 田文琴, 曹力强, 等. 大掺量废弃花岗岩石粉对砂浆力学性能影响[J]. 混凝土, 2021(3): 103-106+111. HAO T, TIAN W Q, CAO L Q, et al. Large amount of waste granite stone powder on the mechanical properties of mortar[J]. Concrete, 2021(3): 103-106+111 (in Chinese). [19] 孙丛涛, 牛荻涛, 元成方, 等. 混凝土动弹性模量与超声声速及抗压强度的关系研究[J]. 混凝土, 2010(4): 14-16. SUN C T, NIU D T, YUAN C F, et al. Study on relation between dynamic modulus of elasticity and velocity of ultrasonic sound and compressive strength for concrete[J]. Concrete, 2010(4): 14-16 (in Chinese). [20] 王佃超, 肖建庄, 夏 冰, 等. 再生骨料碳化改性及其减碳贡献分析[J]. 同济大学学报(自然科学版), 2022, 50(11): 1610-1619. WANG D C, XIAO J Z, XIA B, et al. Carbonation modification of recycled aggregate and carbon dioxide sequestration analysis[J]. Journal of Tongji University (Natural Science), 2022, 50(11): 1610-1619 (in Chinese). [21] 白花蕾, 樊耀虎, 李 滢, 等. 再生微粉和矿物掺合料对混凝土抗碳化性能的影响研究[J]. 硅酸盐通报, 2020, 39(8): 2628-2633. BAI H L, FAN Y H, LI Y, et al. Influences of recycled fine powder and mineral admixtures on carbonization resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2628-2633 (in Chinese). [22] SINGH S, KHAN S, KHANDELWAL R, et al. Performance of sustainable concrete containing granite cutting waste[J]. Journal of Cleaner Production, 2016, 119: 86-98. [23] 谭幸淼, 吴汐晗, 杨健茹, 等. 花岗岩废石粉对水泥砂浆性能的影响[J]. 混凝土与水泥制品, 2022(10): 96-100. TAN X M, WU X H, YANG J R, et al. Effects of granite waste powder on the performance of cement mortar[J]. China Concrete and Cement Products, 2022(10): 96-100 (in Chinese). [24] 蒋林华, 关宇刚, 朱卫华. 水泥基复合材料的孔结构与强度相关性研究[J]. 河海大学学报(自然科学版), 2003, 31(6): 666-668. JIANG L H, GUAN Y G, ZHU W H. Pore structure and its correlation with strength of cement matrix composite material[J]. Journal of Hehai University (Natural Sciences), 2003, 31(6): 666-668 (in Chinese). [25] JAMBOR J. Pore structure and strength development of cement composites[J]. Cement and Concrete Research, 1990, 20(6): 948-954. [26] DUAN P, SHUI Z H, CHEN W, et al. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete[J]. Construction and Building Materials, 2013, 44: 1-6. [27] 张楠楠, 李云龙, 刘锦红, 等. 玄武岩粉对海工胶凝材料性能及水化的影响[J]. 硅酸盐通报, 2020, 39(7): 2204-2210. ZHANG N N, LI Y L, LIU J H, et al. Effect of the addition of basalt powder on properties and hydration of marine cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2204-2210 (in Chinese). |