[1] MAHATA S, MAHATO S S, NANDI M M, et al. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution[C]//AIP Conference Proceedings. Berhampur, Odisha, India, AIP, 2012: 225-228. [2] ZHANG F, ZHANG H, ZHAO H Z, et al. Sintering properties and microstructure of Al2O3-TiO2-CaO composite materials based on ferrotitanium slag[J]. Ceramics International, 2023, 49(23): 38256-38263. [3] WU J F, ZHANG C, XU X H, et al. Enhanced thermal shock resistance of ZrO2-reinforced Al2O3-CaAl12O19 composites prepared from ferrotitanium slag: crack propagation resistance mechanisms[J]. Ceramics International, 2021, 47(10): 14540-14550. [4] LI J Y, YU J, ZHAO H Z, et al. Ceramic composites based on in situ calcium hexaaluminate/aluminum titanate prepared from ferrotitanate slag[J]. Materials Today Communications, 2022, 31: 103237. [5] WANG L, ZHAO H, FENG L, et al. Effect of SiO2 fume addition on sintering properties of calcium alumino-titanate[J]. Refractories, 2016, 50(3): 195-203. [6] ZHAO F, GE T Z, ZHANG L X, et al. A novel method for the fabrication of porous calcium hexaluminate (CA6) ceramics using pre-fired CaO/Al2O3 pellets as calcia source[J]. Ceramics International, 2020, 46(4): 4762-4770. [7] YI S, HUANG Z H, HUANG J T, et al. Novel calcium hexaluminate/spinel-alumina composites with graded microstructures and mechanical properties[J]. Scientific Reports, 2014, 4: 4333. [8] LEE S G, KIM Y W, MITOMO M. Relationship between microstructure and fracture toughness of toughened silicon carbide ceramics[J]. Journal of the American Ceramic Society, 2001, 84(6): 1347-1353. [9] WANG Y, YAN B J, ZHANG Y X, et al. Fundamental research on the densification of alumina ceramics by ferrotitanium slag[J]. Journal of Sustainable Metallurgy, 2022, 8(1): 122-134. [10] 李旺兴, 李东红, 沈湘黔. 提高氧化铝陶瓷断裂韧性的先进途径[J]. 矿冶工程, 2005, 25(4): 73-76+79. LI W X, LI D H, SHEN X Q. Advanced routs for improving fracture toughness of alumina ceramics[J]. Mining and Metallurgical Engineering, 2005, 25(4): 73-76+79 (in Chinese). [11] HORN D S, MESSING G L. Anisotropic grain growth in TiO2-doped alumina[J]. Materials Science and Engineering: A, 1995, 195: 169-178.[12] 高景霞, 陈昌平, 黄淼淼, 等. TiO2-CAS 添加剂对氧化铝陶瓷密度和显微结构的影响[J]. 硅酸盐通报, 2007, 26(3): 602-606. GAO J X, CHEN C P, HUANG M M, et al. Effects of TiO2-CAS additives on microstructures of alumina[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(3): 602-606 (in Chinese). [13] XU L, CHEN M, YIN X L, et al. Effect of TiO2 addition on the sintering densification and mechanical properties of MgAl2O4-CaAl4O7-CaAl12O19 composite[J]. Ceramics International, 2016, 42(8): 9844-9850. [14] DOMÍNGUEZ C, TORRECILLAS R. Influence of Fe3+ on sintering and microstructural evolution of reaction sintered calcium hexaluminate[J]. Journal of the European Ceramic Society, 1998, 18(9): 1373-1379. [15] HASSELMAN D P H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J]. Journal of the American Ceramic Society, 1969, 52(11): 600-604. [16] WANG W L, BI J Q, SUN K N, et al. Thermal shock resistance behavior of alumina ceramics incorporated with boron nitride nanotubes[J]. Journal of the American Ceramic Society, 2011, 94(8): 2304-2307. |