BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (11): 4072-4082.
• Solid Waste and Eco-Materials • Previous Articles Next Articles
HE Shiqin1, LI Fawen1, SUN Xiaoyan2,3, WANG Hailong2,3
Received:
2024-04-16
Revised:
2024-06-28
Online:
2024-11-15
Published:
2024-11-21
CLC Number:
HE Shiqin, LI Fawen, SUN Xiaoyan, WANG Hailong. Advances in Low Carbon High Belite Sulfoaluminate Cement Based on Industrial Solid Waste[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(11): 4072-4082.
[1] HUA X Z, LIU J R, SUN G M. Urban industrial solid waste metabolism based on ecological network analysis: a case study of Tianjin[J]. Cleaner and Responsible Consumption, 2023, 9: 100117. [2] TONG R, SUI T B, FENG L Z, et al. The digitization work of cement plant in China[J]. Cement and Concrete Research, 2023, 173: 107266. [3] KAPLAN G, BAYRAKTAR O Y, LI Z G, et al. Improving the eco-efficiency of fiber reinforced composite by ultra-low cement content/high FA-GBFS addition for structural applications: minimization of cost, CO2 emissions and embodied energy[J]. Journal of Building Engineering, 2023, 76: 107280. [4] WU C L, JIANG W, ZHANG C, et al. Preparation of solid-waste-based pervious concrete for pavement: a two-stage utilization approach of coal gangue[J]. Construction and Building Materials, 2022, 319: 125962. [5] LV F T, WANG L L, AN H F, et al. Effects of hybrid fibers on properties of desulfurized gypsum-based composite cementitious materials[J]. Construction and Building Materials, 2023, 392: 131840. [6] ZHANG J Z, YAO Z Y, WANG K, et al. Sustainable utilization of bauxite residue (red mud) as a road material in pavements: a critical review[J]. Construction and Building Materials, 2021, 270: 121419. [7] WANG G X, LI Z S, YAN J, et al. Value-added utilization of coal fly ash in polymeric composite decking boards[J]. Journal of Materials Research and Technology, 2023, 23: 4199-4210. [8] ZHANG J J, TAN H B, HE X Y, et al. Utilization of carbide slag-granulated blast furnace slag system by wet grinding as low carbon cementitious materials[J]. Construction and Building Materials, 2020, 249: 118763. [9] JIANG C M, YU L, TANG X J, et al. Deterioration process of high belite cement paste exposed to sulfate attack, calcium leaching and the dual actions[J]. Journal of Materials Research and Technology, 2021, 15: 2982-2992. [10] 刁江京, 辛志军, 张秋英. 硫铝酸盐水泥的生产与应用[M]. 北京: 中国建材工业出版社, 2006. DIAO J J, XIN Z J, ZHANG Q Y. Production and application of sulphoaluminate cement[M]. Beijing: China Building Materials Industry Press, 2006 (in Chinese). [11] KLEIB J, AOUAD G, BENZERZOUR M, et al. Effect of calcium sulfoaluminate cements composition on their durability[J]. Construction and Building Materials, 2021, 307: 124952. [12] LV L Y, LUO S T, ŠAVIJA B, et al. Effect of particle size distribution on the pre-hydration, hydration kinetics, and mechanical properties of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2023, 398: 132497. [13] SCRIVENER K L, JOHN V M, GARTNER E M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114: 2-26. [14] MORIN V, TERMKHAJORNKIT P, HUET B, et al. Impact of quantity of anhydrite, water to binder ratio, fineness on kinetics and phase assemblage of belite-ye'elimite-ferrite cement[J]. Cement and Concrete Research, 2017, 99: 8-17. [15] 崔天龙, 王 里, 马国伟, 等. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 76-82. CUI T L, WANG L, MA G W, et al. Effect of HB-CSA and expansion agent on shrinkage and cracking performance of 3D printing concrete[J]. Materials Reports, 2022, 36(2): 76-82 (in Chinese). [16] WANG L, MA H, LI Z J, et al. Cementitious composites blending with high belite sulfoaluminate and medium-heat Portland cements for largescale 3D printing[J]. Additive Manufacturing, 2021, 46: 102189. [17] MOELICH G M, KRUGER P J, COMBRINCK R. Mitigating early age cracking in 3D printed concrete using fibres, superabsorbent polymers, shrinkage reducing admixtures, B-CSA cement and curing measures[J]. Cement and Concrete Research, 2022, 159: 106862. [18] 牛世伟. 高贝利特硫铝酸盐水泥基(HOC)裂隙注浆材料的研发及其相关机理研究[D]. 太原: 太原理工大学, 2021. NIU S W. Research and development of high belite sulphoaluminate cement-based (HOC) crack grouting material and its related mechanism[D]. Taiyuan: Taiyuan University of Technology, 2021 (in Chinese). [19] 夏瑞杰, 朱建平, 刘少雄, 等. 赤泥和脱硫石膏制备高贝利特硫铝酸盐水泥熟料[J]. 有色金属工程, 2017, 7(6): 58-63+79. XIA R J, ZHU J P, LIU S X, et al. Preparation of high belite sulphoaluminate cement clinkers using red mud and desulfurization gypsum[J]. Nonferrous Metals Engineering, 2017, 7(6): 58-63+79 (in Chinese). [20] LI R, HE W L, ZHANG J, et al. Preparation of belite-sulphoaluminate cement using phosphate rock acid-insoluble residue[J]. Construction and Building Materials, 2022, 323: 126573. [21] 张 浩, 李 辉. 用磷石膏制备贝利特-硫铝酸盐水泥[J]. 硅酸盐通报, 2014, 33(6): 1567-1571. ZHANG H, LI H. Preparation of belite-sulphoaluminate cement using phosphogypsum[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(6): 1567-1571 (in Chinese). [22] 赵旭东. 快凝快硬高贝利特硫铝酸盐水泥熟料的研究[D]. 北京: 北京工业大学, 2017. ZHAO X D. Study on fast setting and fast hardening high belite sulphoaluminate cement clinker[D].Beijing: Beijing University of Technology, 2017 (in Chinese). [23] WANG X L, GUO M Z, YUE G B, et al. Synthesis of high belite sulfoaluminate cement with high volume of mixed solid wastes[J]. Cement and Concrete Research, 2022, 158: 106845. [24] 谭俊华, 史熙亮, 朱开金, 等. 利用低品位铝矾土和铸造废砂制备高贝利特硫铝酸盐水泥的研究[J]. 硅酸盐通报, 2017, 36(12): 4284-4290. TAN J H, SHI X L, ZHU K J, et al. Preparation of high belite sulphoaluminate cement by low grade bauxite and foundry waste sand[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4284-4290 (in Chinese). [25] SU D L, YUE G B, LI Q Y, et al. Research on the preparation and properties of high belite sulphoaluminate cement (HBSAC) based on various industrial solid wastes[J]. Materials, 2019, 12(9): 1510. [26] RUNGCHET A, POON C S, CHINDAPRASIRT P, et al. Synthesis of low-temperature calcium sulfoaluminate-belite cements from industrial wastes and their hydration: comparative studies between lignite fly ash and bottom ash[J]. Cement and Concrete Composites, 2017, 83: 10-19. [27] BORŠTNAR M, DANEU N, DOLENEC S. Phase development and hydration kinetics of belite-calcium sulfoaluminate cements at different curing temperatures[J]. Ceramics International, 2020, 46(18): 29421-29428. [28] TANG Y J, ZHAO L, LI B, et al. Controlling the soundness of Portland cement clinker synthesized with solid wastes based on phase transition of MgNiO2[J]. Cement and Concrete Research, 2022, 157: 106832. [29] WANG Z, LI J Z, HUANG S W, et al. Effect of Al2O3/SiO2 ratio on the chroma and phase compositions of white sulfoaluminate cement clinker[J]. Construction and Building Materials, 2022, 345: 128202. [30] 苏敦磊. 基于多种固废协同处置技术的高贝利特硫铝酸盐水泥制备与应用基础研究[D]. 青岛: 青岛理工大学, 2021. SU D L. Basic research on preparation and application of high belite sulphoaluminate cement based on various solid waste co-disposal technologies[D]. Qingdao: Qingdao Tehcnology University, 2021 (in Chinese). [31] 刘辉敏. 水泥生产技术基础[M]. 2版. 北京: 化学工业出版社, 2016. LIU H M. Technical Basis of cement production[M]. 2nd ed. Beijing: Chemical Industry Press, 2016 (in Chinese). [32] 张五怡, 聂 松, 徐名凤, 等. 高贝利特硫铝酸盐水泥活化研究进展[J]. 硅酸盐通报, 2022, 41(9): 2979-2992. ZHANG W Y, NIE S, XU M F, et al. Research progress on activation of high belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 2979-2992 (in Chinese). [33] JULPHUNTHONG P. Synthesizing of calcium sulfoaluminate-belite (CSAB) cements from industrial waste materials[J]. Materials Today: Proceedings, 2018, 5(7): 14933-14938. [34] DUVALLET T Y, MAHMOODABADI M, OBERLINK A E, et al. Production of α'H-belite-CSA cement at low firing temperatures[J]. Cement and Concrete Composites, 2022, 134: 104820. [35] ISTERI V, OHENOJA K, HANEIN T, et al. Ferritic calcium sulfoaluminate belite cement from metallurgical industry residues and phosphogypsum: clinker production, scale-up, and microstructural characterisation[J]. Cement and Concrete Research, 2022, 154: 106715. [36] GAO Y F, LI Z F, ZHANG J, et al. Synergistic use of industrial solid wastes to prepare belite-rich sulphoaluminate cement and its feasibility use in repairing materials[J]. Construction and Building Materials, 2020, 264: 120201. [37] BURRIS L E, KURTIS K E. Water-to-cement ratio of calcium sulfoaluminate belite cements: hydration, setting time, and strength development[J]. Cement, 2022, 8: 100032. [38] 王晓丽. 工业固废制备高贝利特硫铝酸盐水泥试验研究[D]. 青岛: 青岛理工大学, 2019. WANG X L. Experimental study on preparation of high belite sulphoaluminate cement from industrial solid waste[D].Qingdao: Qingdao Tehcnology University, 2019 (in Chinese). [39] CHI L, LI M X, ZHANG Q R, et al. Cobalt immobilization performance and mechanism analysis of low carbon belite calcium sulfoaluminate cement[J]. Construction and Building Materials, 2023, 386: 131545. [40] YAO Y G, WANG W L, GE Z, et al. Hydration study and characteristic analysis of a sulfoaluminate high-performance cementitious material made with industrial solid wastes[J]. Cement and Concrete Composites, 2020, 112: 103687. [41] TANG J, WEI S F, LI W F, et al. Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement[J]. Construction and Building Materials, 2019, 223: 177-184. [42] SANFELIX S G, ZEA-GARCÍA J D, LONDONO-ZULUAGA D, et al. Hydration development and thermal performance of calcium sulphoaluminate cements containing microencapsulated phase change materials[J]. Cement and Concrete Research, 2020, 132: 106039. [43] WANG J F, WANG Y, LIU H, et al. Effect of disodium EDTA on hydration and mechanical properties of calcium sulphoaluminate-belite cement[J]. Cement and Concrete Research, 2023, 164: 107041. [44] 王 琴, 李时雨, 潘 硕, 等. 不同缓凝剂对高贝利特硫铝酸盐水泥性能的影响及机制[J]. 建筑材料学报, 2020, 23(2): 239-246+254. WANG Q, LI S Y, PAN S, et al. Influence and mechanism of different retarders on the performance of high belite sulphoaluminate cement[J]. Journal of Building Materials, 2020, 23(2): 239-246+254 (in Chinese). [45] PÉREZ-BRAVO R, MORALES-CANTERO A, CUESTA A, et al. Early hydration of belite-ye'elimite-ferrite cements: role of admixtures[J]. Construction and Building Materials, 2023, 371: 130765. [46] LI C, WU M X, YAO W. Eco-efficient cementitious system consisting of belite-ye'elimite-ferrite cement, limestone filler, and silica fume[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7941-7950. [47] 吴梦雪, 姚 武, 李 晨, 等. 贝利特-硫铝酸钙水泥制备及贝利特掺硼活化[J]. 同济大学学报(自然科学版), 2017, 45(2): 235-243. WU M X, YAO W, LI C, et al. Preparation of belite-calcium sulfoaluminate cement clinker and activation of belite by boron dopants[J]. Journal of Tongji University (Natural Science), 2017, 45(2): 235-243 (in Chinese). [48] 吴梦雪, 姚 武, 李 晨, 等. 硼、钠复合掺杂对贝利特-硫铝酸钙水泥性能及微观结构的影响[J]. 材料导报, 2017, 31(5): 128-133. WU M X, YAO W, LI C, et al. Effect of combined addition of boron and sodium on property and micro-structure of beliet-sulphoaluminate cement[J]. Materials Reports, 2017, 31(5): 128-133 (in Chinese). [49] LI C, WU M X, YAO W. Effect of coupled B/Na and B/Ba doping on hydraulic properties of belite-ye'elimite-ferrite cement[J]. Construction and Building Materials, 2019, 208: 23-35. [50] SABBAH A, ZHUTOVSKY S. Effect of sulfate content and synthesis conditions on phase composition of belite-ye'elimite-ferrite (BYF) clinker[J]. Cement and Concrete Research, 2022, 155: 106745. [51] EL-ALFI E A, GADO R A. Preparation of calcium sulfoaluminate-belite cement from marble sludge waste[J]. Construction and Building Materials, 2016, 113: 764-772. [52] SUN C Y, ZHANG J, YAN C W, et al. Hydration characteristics of low carbon cementitious materials with multiple solid wastes[J]. Construction and Building Materials, 2022, 322: 126366. [53] HE W L, LI R, ZHANG Y, et al. Synergistic use of electrolytic manganese residue and Barium slag to prepare belite- sulphoaluminate cement study[J]. Construction and Building Materials, 2022, 326: 126672. [54] NABILA BOUHA F, KACIMI L, DE LA TORRE A G. Manufacture of rich-sulfoaluminate belite cement at low temperature from waste mixture by dry and hydrothermal processes[J]. Construction and Building Materials, 2022, 314: 125641. [55] ÁLVAREZ-PINAZO G, SANTACRUZ I, ARANDA M A G, et al. Hydration of belite-ye'elimite-ferrite cements with different calcium sulfate sources[J]. Advances in Cement Research, 2016, 28(8): 529-543. [56] 梁 娇, 刘 娜, 刘从振, 等. 磷石膏与低品位矾土制备高贝利特-硫铝酸盐水泥[J]. 非金属矿, 2016, 39(4): 17-20. LIANG J, LIU N, LIU C Z, et al. Utilization of phosphogypsum and low grade bauxite for belite rich calcium sulphoaluminate cement[J]. Non-Metallic Mines, 2016, 39(4): 17-20 (in Chinese). [57] 瞿海洋. 铁相对贝利特硫铝酸盐水泥制备与性能影响研究[D]. 北京: 北京工业大学, 2018. QU H Y. Study on the influence of iron phase on the preparation and properties of belite sulphoaluminate cement[D].Beijing: Beijing University of Technology, 2018 (in Chinese). [58] WANG F, LONG G C, BAI M, et al. A new perspective on Belite-ye'elimite-ferrite cement manufactured from electrolytic manganese residue: production, properties, and environmental analysis[J]. Cement and Concrete Research, 2023, 163: 107019. [59] SU D L, LI Q Y, GUO Y X, et al. Effect of residual CaSO4 in clinker on properties of high belite sulfoaluminate cement based on solid wastes[J]. Materials, 2020, 13(2): 429. [60] LI C, LI J Q, TELESCA A, et al. Effect of polycarboxylate ether on the expansion of ye'elimite hydration in the presence of anhydrite[J]. Cement and Concrete Research, 2021, 140: 106321. [61] SABBAH A, ZHUTOVSKY S. The influence of clinkering conditions and cooling rate on the phase composition of belite-ye'elimite-ferrite (BYF) clinker[J]. Materials Today: Proceedings, 2023: 140: 106321. |
[1] | ZHAO Guoqing, YANG Jinbo, YIN Hang. Molecular Dynamics of NaCl Evaporation Crystallization in C-S-H Gel Amorphous Nanopores [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3173-3181. |
[2] | ZHAO Yanru, LONG Sirui, BAI Jianwen, LIU Ming. Experimental Study on Mechanical Properties and Microstructure of Aeolian Sand Concrete after High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3182-3191. |
[3] | ZHANG Zhenyang, ZHANG Lu, YI Haihe, ZHENG Run, MA Keshun, ZHANG Lin, REN Mengqi, WANG Chunguang. Mechanical Properties of Geopolymer Concrete Based on Response Surface Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3192-3202. |
[4] | WANG Xiaoxiao, DONG Peisen, YANG Xinrui, ZHANG Ju, YAN Changwang, DONG Yufei. Mechanical Properties of Steel Fiber Geopolymer Concrete under Low Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3203-3213. |
[5] | HUANG Bin, GONG Mingzi, PAN Axin, RAO Xianpeng, WANG Tao, CHEN Chen, HUANG Wei. Influences of Water Reducing Agent and Steel Fiber on Rheological and Mechanical Properties of Ultra-High Performance Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3214-3223. |
[6] | WANG Hao, TAN Yanbin, LIU Xing, YANG Lu, YUAN Qiang, XIE Binfu, LIU Bo. Influences of Igneous Rock Mineral Materials on Properties of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3244-3251. |
[7] | LI Yanyan, DU Xiaoli, WANG Haowei, XU Kai. Dynamic and Static Mechanical Properties of Silica Fume-Polypropylene Fiber Double Doped Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3320-3329. |
[8] | CUI Yingying, HE Jianhui, LYU Minwang, YANG Lu, LIU Yunpeng. Performance of Belite Cement Clinker from Completely Recyclable Cement Mortars [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3348-3358. |
[9] | LIU Hongbo, JIA Xiaojing, ZHANG Boyang, SUN Yan, LI Yong, CHANG Pu, SUN Jing. Mechanical Properties and Frost Resistance Durability of Recycled Coarse Aggregate Concrete Dual Doping Graphene and Oxide-Graphene [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3359-3367. |
[10] | CHEN Hao, YANG Jingxiao, XU Yong, JING Zhengyang, TU Bingtian, WANG Hao. Preparation and Properties of Mg0.27Al2.58O3.73N0.27 Transparent Ceramics by Hot Pressing and Hot Isostatic Pressing Sintering [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3378-3385. |
[11] | ZHAO Cunhe, NIE Guanglin, LIU Yijun, ZUO Fei, PANG Weike, WANG Qinggang,BAO Yiwang. Ceramic Slabs Prepared Using Different Flux System and Its Properties [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3386-3398. |
[12] | HAN Zheng, WANG Tao, LIU Zhiwei, NIE Yunpeng, WANG Xueting. Composite Slurry for Room-Temperature Extrusion 3D Printing HA/β-TCP/DCPA Bone Scaffold [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3472-3478. |
[13] | CHEN Feng, YI Ke, WANG Chaohui, DANG Wujuan, QU Xifeng. Research Progress of Fiber Modified Cement-Based Materials: Cement Stabilized Base [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3479-3493. |
[14] | ZHOU Jian, LI Weihua, PI Zhenyu, XU Mingfeng, LI Hui, NIE Song. Research Progress on Carbonation Resistance of Calcium Sulfoaluminate Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2711-2725. |
[15] | ZHOU Yongfang, ZHANG Dajiang, JIANG Liangzhi, HUANG Wen, WANG Lei, WANG Jianfeng. Research Progress on Effect of Tertiary Alkanolamine on Hydration of Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2748-2757. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||