[1] WANG J, XU Y Q, WU X P, et al. Advances of graphene- and graphene oxide-modified cementitious materials[J]. Nanotechnology Reviews, 2020, 9(1): 465-477. [2] ALKHATEB H, AL-OSTAZ A, CHENG A H D, et al. Materials genome for graphene-cement nanocomposites[J]. Journal of Nanomechanics and Micromechanics, 2013, 3(3): 67-77. [3] KASHIF UR REHMAN S, KUMAROVA S, ALI MEMON S, et al. A review of microscale, rheological, mechanical, thermoelectrical and piezoresistive properties of graphene based cement composite[J]. Nanomaterials, 2020, 10(10): 2076. [4] SUO Y X, GUO R X, XIA H T, et al. A review of graphene oxide/cement composites: performance, functionality, mechanisms, and prospects[J]. Journal of Building Engineering, 2022, 53: 104502. [5] ZHANG P, SUN Y W, WEI J D, et al. Research progress on properties of cement-based composites incorporating graphene oxide[J]. Reviews on Advanced Materials Science, 2023, 62(1): 20220329. [6] MENG S Q, OUYANG X W, FU J Y, et al. The role of graphene/graphene oxide in cement hydration[J]. Nanotechnology Reviews, 2021, 10(1): 768-778. [7] 杨凌俊, 袁小亚. 氧化石墨烯复掺石墨烯对水泥砂浆力学性能的提升及机理研究[J]. 功能材料, 2019, 50(12): 12089-12096. YANG L J, YUAN X Y. Enhanced mechanical performance of cement mortar co-blended by graphene-oxide and graphene and its mechanism[J]. Journal of Functional Materials, 2019, 50(12): 12089-12096 (in Chinese). [8] LI X Y, KORAYEM A H, LI C Y, et al. Incorporation of graphene oxide and silica fume into cement paste: a study of dispersion and compressive strength[J]. Construction and Building Materials, 2016, 123: 327-335. [9] YANG S, JIA W, WANG Y G, et al. Hydroxylated graphene: a promising reinforcing nanofiller for nanoengineered cement composites[J]. ACS Omega, 2021, 6(45): 30465-30477. [10] 袁小亚, 蒲云东, 桂尊曜, 等. HO-G对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 148-155. YUAN X Y, PU Y D, GUI Z Y, et al. Effect of hydroxylated graphene on the properties of fly ash-cementitious composites [J]. Materials Introduction, 2024, 38 (11): 148-155 (in Chinese). [11] 张惠一, 桂尊曜, 蒲云东, 等. 羟基化石墨烯对水泥基渗透结晶型防水材料力学性能的影响[J]. 硅酸盐通报, 2023, 42(5): 1569-1577+1588. ZHANG H Y, GUI Z Y, PU Y D, et al. Effect of hydroxylated graphene on mechanical properties of cement-based permeable crystalline waterproof materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1569-1577+1588 (in Chinese). [12] 桂尊曜, 蒲云东, 张惠一, 等. 水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响[J]. 复合材料学报, 2023, 40: 1-14. GUI Z Y, PU Y D, ZHANG H Y, et al. The influence of dispersed graphene in water on the electrical conductivity, heating and thermal properties of cement slurry [J]. Journal of Composites, 2023, 40: 1-14 (in Chinese). [13] PU Y D, YANG S, QI M, et al. Synergistic effect of graphene oxide and hydroxylated graphene on the enhanced properties of cement composites[J]. RSC Advances, 2022, 12(41): 26733-26743. [14] WEI Z Q, WANG Y G, QI M, et al. The role of sucrose on enhancing properties of graphene oxide reinforced cement composites containing fly ash[J]. Construction and Building Materials, 2021, 293: 123507. [15] 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. State Administration of Market Supervision and Administration, Standardization Administration of China. Test method for strength of cementitious sand (ISO method): GB/T 17671—2021 [S]. Beijing: China Standard Press, 2021 (in Chinese). [16] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for basic performance test method of building mortar: JGJ/T 70—2009[S]. Beijing: China Construction Industry Press, 2009 (in Chinese). [17] 中华人民共和国国家质量监督检验检验总局, 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2005. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Method for determining the flowability of cementitious sand: GB/T 2419—2005[S]. Beijing: China Standard Press, 2005 (in Chinese). [18] WANG Q, CUI X Y, WANG J, et al. Effect of fly ash on rheological properties of graphene oxide cement paste[J]. Construction and Building Materials, 2017, 138: 35-44. [19] LI H X, ZHAO G, ZHANG H. Recent progress of cement-based materials modified by graphene and its derivatives[J]. Materials, 2023, 16(10): 3783. [20] KRYSTEK M, CIESIELSKI A, SAMORÌ P. Graphene-based cementitious composites: toward next-generation construction technologies[J]. Advanced Functional Materials, 2021, 31(27): 2101887. [21] LIU J T, FU J L, NI T Y, et al. Fracture toughness improvement of multi-wall carbon nanotubes/graphene sheets reinforced cement paste[J]. Construction and Building Materials, 2019, 200: 530-538. [22] LIN Y L, DU H J. Graphene reinforced cement composites: a review[J]. Construction and Building Materials, 2020, 265: 120312. [23] ZHAO L, GUO X L, SONG L G, et al. An intensive review on the role of graphene oxide in cement-based materials[J]. Construction and Building Materials, 2020, 241: 117939. [24] FENG P, LIU J P, SHE W, et al. A model investigation of the mechanisms of external sulfate attack on Portland cement binders[J]. Construction and Building Materials, 2018, 175: 629-42. [25] JIN M, JIANG L H, ZHU Q. Monitoring chloride ion penetration in concrete with different mineral admixtures based on embedded chloride ion selective electrodes[J]. Construction and Building Materials, 2017, 143: 1-15. |