BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (10): 3524-3533.
• Cement and Concrete • Previous Articles Next Articles
YAO Jie, YANG Lan, WU Puwei
Received:
2024-02-27
Revised:
2024-05-05
Online:
2024-10-15
Published:
2024-10-16
CLC Number:
YAO Jie, YANG Lan, WU Puwei. Interfacial Bonding Properties of Graphene/Graphene Oxide and Calcium Silicate Hydrate[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3524-3533.
[1] 赵廷凯. “纳米材料” 专题序言[J]. 材料工程, 2020, 48(4): 2. ZHAO T K. Preface to the topic of “nano-materials”[J]. Journal of Materials Engineering, 2020, 48(4): 2 (in Chinese). [2] 曹宇臣, 郭鸣明. 石墨烯材料及其应用[J]. 石油化工, 2016, 45(10): 1149-1159. CAO Y C, GUO M M. Graphene materials and its applications[J]. Petrochemical Technology, 2016, 45(10): 1149-1159 (in Chinese). [3] GAO Y W, HAO P. Mechanical properties of monolayer graphene under tensile and compressive loading[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41(8): 1561-1566. [4] AVOURIS P. Graphene: electronic and photonic properties and devices[J]. Nano Letters, 2010, 10(11): 4285-4294. [5] FAN Y F, ZHANG G S, LI Y. Study on graphene oxide reinforced magnesium phosphate cement composites[J]. Construction and Building Materials, 2022, 359: 129523. [6] LIU Q Z, ZHUANG Y, SHI B Y. Three-dimensional reduced graphene reinforced cement with enhanced safety and durability for drinking water distribution applications: long-term experimental and theoretical study[J]. Water Research, 2023, 230: 119572. [7] FAN Y C, NI Z, MU S C, et al. Hybrid micromechanical modelling and experiments on electrical conductivity of graphene reinforced porous and saturated cement composites[J]. Cement and Concrete Composites, 2023, 141: 105148. [8] BAHRAQ A A, AL-OSTA M A, OBOT I B, et al. Improving the adhesion properties of cement/epoxy interface using graphene-based nanomaterials: insights from molecular dynamics simulation[J]. Cement and Concrete Composites, 2022, 134: 104801. [9] WANG P, QIAO G, GUO Y P, et al. Molecular dynamics simulation of the interfacial bonding properties between graphene oxide and calcium silicate hydrate[J]. Construction and Building Materials, 2020, 260: 119927. [10] WANG P, QIAO G, HOU D S, et al. Functionalization enhancement interfacial bonding strength between graphene sheets and calcium silicate hydrate: insights from molecular dynamics simulation[J]. Construction and Building Materials, 2020, 261: 120500. [11] MIN B Z, WANG P Y, LI S Z, et al. Mechanical influence of graphene oxide in the interface between calcium silicate hydrate and quartz: a molecular dynamics study[J]. Construction and Building Materials, 2022, 325: 126597. [12] FAN Q C, WANG Z P, MENG X, et al. Multi-scale analysis of the strengthening mechanism of functionalized graphene as reinforcement in cement composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129729. [13] HOU D S, LU Z Y, LI X Y, et al. Reactive molecular dynamics and experimental study of graphene-cement composites: structure, dynamics and reinforcement mechanisms[J]. Carbon, 2017, 115: 188-208. [14] KAI M F, ZHANG L W, LIEW K M. Graphene and graphene oxide in calcium silicate hydrates: chemical reactions, mechanical behavior and interfacial sliding[J]. Carbon, 2019, 146: 181-193. [15] KAI M F, ZHANG L W, LIEW K M. Carbon nanotube-geopolymer nanocomposites: a molecular dynamics study of the influence of interfacial chemical bonding upon the structural and mechanical properties[J]. Carbon, 2020, 161: 772-783. [16] GAO Y, JING H, WU J, et al. Molecular dynamics study on the influence of graphene oxide on the tensile behavior of calcium silicate hydrate composites[J]. Materials Chemistry and Physics, 2022, 292: 126881. [17] GONG P, REN Q, PENG S, et al. Influence of graphene oxide on the self-healing of cement paste fractures in CCUS cementing: a combined analysis of experiments and molecular dynamics simulations[J]. Construction and Building Materials, 2023, 404: 133067. [18] YANG H. Mechanical properties and mechanisms of alkali-activated slag paste reinforced by graphene oxide-SiO2 composite[J]. Journal of Cleaner Production, 2022, 378: 134502. [19] 周 扬. 基于分子动力学的水化硅酸钙的微结构与性能研究[D]. 南京: 东南大学, 2018. ZHOU Y. Study on the microstructure and properties of calcium silicate hydrates based on molecular dynamics simulation[D]. Nanjing: Southeast University, 2018 (in Chinese). [20] WANG X F, LI T R, WEI P, et al. Computational study of the nanoscale mechanical properties of C-S-H composites under different temperatures[J]. Computational Materials Science, 2018, 146: 42-53. [21] YANG Y, CAO J. Interfacial heat transfer behavior of graphene-based filler and calcium-silicate-hydrate in cement composites[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121165. [22] YANG Y, CAO J. New insight on the interfacial behavior between graphene-based membranes and protonated silicon-dioxide via molecular dynamics simulations[J]. Applied Surface Science, 2022, 590: 152727. [23] BÜYÜKÖZTÜRK O, BUEHLER M J, LAU D, et al. Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface[J]. International Journal of Solids and Structures, 2011, 48(14/15): 2131-2140. [24] PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16102-16107. [25] HOU D S, YANG Q R, JIN Z Q, et al. Enhancing interfacial bonding between epoxy and CSH using graphene oxide: an atomistic investigation[J]. Applied Surface Science, 2021, 568: 150896. [26] LERF A, HE H Y, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 1998, 102(23): 4477-4482. [27] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. [28] YANG Y, WANG Y X, CAO J. Prediction and evaluation of thermal conductivity in nanomaterial-reinforced cementitious composites[J]. Cement and Concrete Research, 2023, 172: 107240. [29] WATKINS E K, JORGENSEN W L. Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations[J]. The Journal of Physical Chemistry A, 2001, 105(16): 4118-4125. [30] 李宗利, 刘士达, 童涛涛, 等. 凝胶孔对水化硅酸钙(C-S-H)力学性能影响的分子动力学模拟[J]. 材料科学与工程学报, 2023, 41(5): 703-709+774. LI Z L, LIU S D, TONG T T, et al. Effect of gel pore on the mechanical properties of calcium silicate hydrate by molecular dynamics simulation[J]. Journal of Materials Science and Engineering, 2023, 41(5): 703-709+774 (in Chinese). [31] MISHRA R K, MOHAMED A K, GEISSBÜHLER D, et al. A force field database for cementitious materials including validations, applications and opportunities[J]. Cement and Concrete Research, 2017, 102: 68-89. [32] LIANG T, LAI Y M, HOU D S, et al. Freezing mechanism of NaCl solution ultra-confined on surface of calcium-silicate-hydrate: a molecular dynamics study[J]. Cement and Concrete Research, 2022, 154: 106722. [33] HOU D S, ZHENG H P, WANG P, et al. Molecular insight in the wetting behavior of nanoscale water droplet on CSH surface: effects of Ca/Si ratio[J]. Applied Surface Science, 2022, 587: 152811. [34] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS: a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. [35] PARK S, KHALILI-ARAGHI F, TAJKHORSHID E, et al. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality[J]. The Journal of Chemical Physics, 2003, 119(6): 3559-3566. [36] HAN S, HOSSAIN M S, HA T, et al. Graphene-oxide-reinforced cement composites mechanical and microstructural characteristics at elevated temperatures[J]. Nanotechnology Reviews, 2022, 11(1): 3174-3194. [37] YANG S, JIA W, WANG Y G, et al. Hydroxylated graphene: a promising reinforcing nanofiller for nanoengineered cement composites[J]. ACS Omega, 2021, 6(45): 30465-30477. [38] AN J, NAM B H, ALHARBI Y, et al. Edge-oxidized graphene oxide (EOGO) in cement composites: cement hydration and microstructure[J]. Composites Part B: Engineering, 2019, 173: 106795. [39] CHO B H, NAM B H, KHAWAJI M. Flexural fatigue behaviors and damage evolution analysis of edge-oxidized graphene oxide (EOGO) reinforced concrete composites[J]. Cement and Concrete Composites, 2021, 122: 104082. |
[1] | TANG Ruifeng, CUI Suping, YANG Feihua, WANG Zhaojia, WANG Ziming. Effect of Dosage of Polycarboxylate Copolymer Used in Synthesis Process on Nucleation and Early Strength of Nano C-S-H Seeds [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3128-3136. |
[2] | LIU Hongbo, JIA Xiaojing, ZHANG Boyang, SUN Yan, LI Yong, CHANG Pu, SUN Jing. Mechanical Properties and Frost Resistance Durability of Recycled Coarse Aggregate Concrete Dual Doping Graphene and Oxide-Graphene [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3359-3367. |
[3] | CHANG Xizheng, ZHANG Jihong, HE Jianxiong, LI Junge, XIE Jun. Preparation and Corrosion Resistance Performance of Graphene Oxide/SiO2 Coatings on LAS Glass [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 3034-3044. |
[4] | ZHANG Biao, LIU Hongyu, QI Nan, WANG Fen, ZHU Jianfeng, LI Li, MA Tao, LUO Hongjie, SHI Pei. Effect of Graphene Oxide on Hydration and Mchanical Properties of Natural Hydraulic Lime [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2640-2648. |
[5] | LIU Aiping, WU Chiqiu, SHUI Zhonghe, LYU Wei, LIAN Jiuyang. Composition Design and Property Regulation of High Content Phosphogypsum Hydraulic Cementing Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 1003-1011. |
[6] | ZHU Yinyuan, ZHU Ganyu, QI Fang, LI Huiquan, CHEN Yan, LI Shaopeng, GUO Yanxia. Research Progress on Preparation and Comprehensive Utilization of Solid Waste Based Calcium Silicate Hydrates [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 517-533. |
[7] | ZHANG Biao, SHI Qiming, BAI Ziheng, LIU Hongyu, MA Tao, WANG Fen, ZHU Jianfeng, SHI Pei. In-Situ Synthesis of Hydroxyapatite by Biomimetic Mineralization Assisted by Graphene Oxide [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 363-369. |
[8] | QIN Sicheng, WU Jinxiu, QI Yuanhao, LIU Zhaogang, HU Yanhong, FENG Fushan, LI Jianfei, ZHANG Xiaowei. Effects of Additives on Anhydrous Calcium Sulfate Whisker Growth and Molecular Dynamics Simulation [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2551-2562. |
[9] | WANG Min, CAI Wenhao, YU Jianyuan, WANG Zhihao, ZHOU Haozhe, ZHAO Hongli. Contact Characteristics of G/FTO Bilayer Films Based on Atomic Force Microscopy [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(6): 2262-2272. |
[10] | REN Pengcheng, ZHENG Heping, JIN Zuquan, LI Mengyuan, LI Jinxin, PANG Bo. Transformation Mechanism of AFt and AFm in Geothermal Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(5): 1551-1560. |
[11] | ZHANG Huiyi, GUI Zunyao, PU Yundong, QI Meng, CAO Weiqi, YUAN Xiaoya. Effect of Hydroxylated Graphene on Mechanical Properties of Cement-Based Permeable Crystalline Waterproof Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(5): 1569-1577. |
[12] | JIANG Xiaodan, SUN Mengqi, LIU Ang, WANG Pan, HOU Dongshuai. Molecular Simulation Study on Effect of Carbonation on Interfacial Bonding Performance Between Epoxy Resin and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1291-1297. |
[13] | LIU Zhi, REN Zijie, GAO Huimin, WANG Kang, SONG Yuhan, GUAN Junfang. Hydrothermal Synthesis of Calcium Silicate Hydrate from Different Siliceous Materials and Its Reaction Efficiency [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 854-860. |
[14] | WANG Weijie, ZHAN Mingzhe, ZHU Xingyu, LIU Changchun, WU Guangxin, CHEN Hao, YANG Wenjie. Research Progress of Green Oxidation Intercalation System in Graphite Expansion and Stripping [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 1037-1047. |
[15] | LI Hongxue, HUANG Qizhong, WANG Shaobin, LIU Junsheng. Effect of Graphene on Performance of Fe-Based Metal Binder Diamond Abrasive Tools [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 1048-1053. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||